
Towards 2D Traceability in a Platform for Contract Aware
Visual Transformations with Tolerated Inconsistencies

Pieter Van Gorp
Department of Mathematics and Computer Science

University of Antwerp, Belgium

Frank Altheide
Database and Information Systems
University of Paderborn, Germany

Dirk Janssens
Department of Mathematics and Computer Science

University of Antwerp, Belgium

Abstract

Today’s model-driven engineering tools focus on the au-
tomatic transformation of software models and lack essen-
tial support for interacting with developers. This paper
presents some lessons learned from building a standard
compliant platform for the visual development of interactive
consistency maintenance software. Based on an established
requirements engineering case study, the paper illustrates
the need for developer interaction and the controlled toler-
ance of inconsistencies. This motivates the role of traceabil-
ity links in two dimensions: links between application mod-
els allow one to maintain consistency incrementally and tol-
erate inconsistencies in a controlled manner. In the other
dimension, links between transformation models enable the
refinement of declarative descriptions of consistency con-
tracts into constructive transformations. Such transforma-
tions can be generated automatically from the contracts but
tend to be optimized subtly by a transformation expert.

1 Introduction

The specification of a software system, be it embedded
control software or a large information system, is not mono-
lithic. It consists of contributions from different disciplines
(requirements engineering, security, enterprise architecture,
...) and models the system under development from differ-
ent perspectives and at different levels of abstraction. The
parts can overlap and contain redundant information, in any
case they are interdependent.

If the software system that results from this specifica-
tion is to be free of errors then the parts of the specification
need to be consistent. Consistency according to the IEEE
“is the degree of uniformity, standardization, and freedom

Figure 1. Levels of Traceability

from contradiction among the documents or parts of a sys-
tem or component” [1]. This paper uses this definition in the
narrow sense by focussing on software models that need to
be kept free of contradiction.

Software models can be treated as graphs whose nodes
represent model elements. Such nodes have attributes like
name, author, visibility, etc. Edges represent links between
the model elements. In an object oriented model, such edges
represent associations, method calls, type declarations, etc.
We will treat text documents as models as well: the nodes in
this case are sections, chapters, etc. The set of relationships
between the various models that are part of the specification
can be perceived as an interconnection graph that joins the
otherwise independent models.

As Figure 1 illustrates, the relationships can differ in ex-
pressiveness: from very generic “is related to” relationships
to precise relationships upon which formal constraints have
been defined. Note that the IEEE defines traceability as the
“the degree to which a relationship can be established be-
tween two or more products of the development process, es-
pecially products having a predecessor-successor or master-

1

subordinate relationship to one another” [1]. The relation-
ships in this definition are only established in the mind of a
software developer. Therefore, this paper defines traceabil-
ity links as the software artifacts that make these relations
explicit in interconnection graphs called traceability mod-
els. The union of a traceability model and the models it
connects is called an integrated model.

This paper will illustrate the role of traceability models
in tools for interactive consistency maintenance. Consis-
tency can be achieved manually by reviews and inspections
but also automatically by tools that evaluate constraints and
restore consistency where constraints are not satisfied. In
some cases, inconsistencies should be tolerated. This pa-
per will show how constraints can be relaxed in a controlled
manner.

Maintaining consistency over the course of the devel-
opment is important but also work-intensive and time-
consuming, therefore automation is desirable. The degree
of automation that can be achieved however is highly de-
pendent on the development environment, on existing pro-
cesses and tools. There is a trade-off between costs and
the degree of automation the developers obtain. In this pa-
per we want to discuss the spectrum of consistency main-
tenance approaches and present three existing approaches
specifically:

• ToolNet as a representative tool for manually maintain-
ing the consistency of models in commercial off-the-
shelf (COTS) tools,

• CAViT as a general purpose framework for automating
model transformations based on MOF, OCL and UML
based graph rewriting, and

• Triple Graph Grammars (TGGs) as a dedicated for-
malism for fully automatic consistency maintenance.

We will portray the work we carried out to combine these
three approaches in the ICONS framework for supporting
interactive consistency maintenance. ICONS is designed
for interoperability with MOF compliant COTS tools such
as MagicDraw while hiding irrelevant API details from
transformation writers.

The remainder of this paper is structured as follows: sec-
tion 2 presents some models from a case study to motivate
the need for consistency maintenance techniques. Section 3
discusses the solution space. Section 3.1 introduces the
reader to the functionality and implementation challenges
of tools like ToolNet. Section 3.2 presents the other side
of the tool spectrum by discussing the CAViT framework.
Section 3.3 motivates the contributions of this paper. It
illustrates the need for interaction, controlled inconsisten-
cies and fine-grained consistency constraints in tools like
ICONS. Section 3.4 presents triple graph grammars as a for-
malism that allows one to model a large class of fully auto-

matic transformations concisely yet lacks support for mod-
eling developer interaction and controlled inconsistencies.
Section 4 therefore presents the new two-dimensional trace-
ability technique for combining the conciseness of TGGs
with the flexibility of CAViT. This section forms the main
theoretical contribution of this paper. Obviously, the paper
concludes by summarizing the lessons learned.

2 Case Study

To give a realistic idea of models that need to be kept
consistent, this section presents some heterogeneous mod-
els of a sample application. The application is based on the
Meeting Scheduler problem statement that was proposed by
Van Lamsweerde et al. [2] as a benchmark for requirements
elicitation and software specification techniques. The prob-
lem statement of the benchmark was published deliberately
imprecise and incomplete [3]. The first part of the problem
statement reads as follows:

Meetings are typically arranged in the following
way. A meeting initiator asks all potential meet-
ing attendees for the following information based
on their personal agenda:

• a set of dates on which they cannot attend
the meeting (hereafter referred as exclusion
set);

• a set of dates on which they would prefer the
meeting to take place (hereafter referred as
preference set).

A meeting date is defined by a pair (calendar date,
time period). The exclusion and preference sets
are contained in some time interval prescribed by
the meeting initiator (hereafter referred as date
range).

The actual goal of the system is to propose an optimal meet-
ing location and date and streamline the communication
among the participants of a meeting [2]. The requirements
specification distinguishes between different conflict types
and describes ways of resolving them.

Section 2.1 presents a conceptual model that formalizes
the concepts, the associations and their multiplicities from
the problem domain. Section 2.2 presents a robustness
model for the “confirm meeting” use case scenario. The
fragments in this paper should merely illustrate some real-
istic dependencies between models in different languages
and should not be regarded as a complete or stable specifi-
cation of a meeting scheduler. Instead, the sample models
are meant to make the constraints in sections 3.1.2, 3.2.2
and 3.3.2 more concrete.

2

Figure 2. Conceptual Model.

2.1 Conceptual Model

Figure 2 shows a conceptual model (CM) of a Meeting
Scheduler application, specified in UML syntax. At the
conceptual level, analysts are free to use constructs such
as association classes, views, and other language features.
Such features may not be supported directly by the im-
plementation language but they allow one to represent the
problem domain in a way as close as possible to one’s per-
ception of reality.

A complete conceptual model contains all relevant nouns
and verbs from a problem domain as classes and opera-
tions. We could establish some traceability in this para-
graph by describing in natural language how the words from
Figure 2 relate to those from the requirements specification
presented above. However, this would not be an adequate
basis for automating the consistency maintenance between
these two models. Moreover, developers may want some
tool support for navigating from one model element to all
its related elements in another model.

2.2 Robustness Model

The model-view-controller (MVC) pattern has been
found beneficial for system evolvability [4]. Therefore,
Rosenberg and Scott propose to move from analysis to
design by creating robustness models [5]. User interface
screens are represented by boundary objects (or interfaces),
persistent classes from the conceptual model are repre-
sented by entities while application behavior is encapsu-
lated by control objects (or services). A set of architectural
rules (like “only services are allowed to access entities”)
assists developers to create an evolvable design. Figure 3
shows a robustness model (RM [5]) of the application un-
der study. Note that the entity Schedule corresponds to the
class Schedule from Figure 2.

The model describes the way a meeting can be confirmed
by an initiator. After logging in, the initiator is directed to
the main user interface screen of the application. There, he
can select a particular meeting and click the “confirm meet-
ing” button. This action triggers an update of the meeting

Figure 3. Robustness Model.

status and a booking of the meeting location. Finally, the
success of the use case is confirmed by sending a mail to all
meeting attendees.

3 Maintaining Consistency

This section presents an overview of existing consistency
maintenance approaches to provide insight in their power
and limitations. It illustrates how some of these limita-
tions can be overcome by combining the strengths of the
presented approaches.

3.1 Manual Consistency Maintenance

This section illustrates how tools like ToolNet can assist
developers in the manual construction of traceability links.

3.1.1 User Experience

A manual traceability tool like ToolNet allows one to create
and navigate links between model elements. Figure 4 shows
how a user may request all links related to the word “meet-
ing” in the requirements document. A popup shows that this
word is related to a model element with name “Meeting” in
the application model. This model is stored in a UML tool
and contains both the conceptual and the robustness model.

Developers can also perform completeness checks on
the set of traceability links. They may for example check
whether every class in the conceptual model traces to a word
in the requirements document. The underlying rationale of
such a check is that artificial concepts in a conceptual model
should be avoided whenever possible.

3.1.2 Implementation Challenges

ToolNet is a traceability tool for models residing in COTS
development tools. Basili and Boehm [6] define COTS

3

Figure 4. Sketch from ToolNet operating on the
requirements document.

components as software with the following three charac-
teristics: the buyer has no access to the source code, the
vendor controls its development and it has a nontrivial user
base. Unfortunately, the features of a component may not
match the buyer’s requirements completely and it usually
supports only a part of the overall development process.

This poses a number of integration challenges. First of
all, extension and adaptation of the component is limited
by the mechanisms provided by the vendor. Secondly, the
components are unaware of each other. Thirdly, a vendor
is not bound to adhere to standards but focuses on imple-
menting a set of features to gain a competitive edge over his
competitors. Lastly, the buyer has only limited influence on
the development of the component. The visions of a spe-
cific buyer and the vendor may diverge, forcing this buyer
to exchange one component for another.

Still one needs a common language to reason about
model elements and traceability links. ToolNet’s metamodel
of such a language originally only supported directed and
undirected binary links. The following OCL code formal-
izes the constraint described in section 3.1.1 on a meta-
model for undirected n-ary traceability links:

let requirementsWordForEachCmClass(): Boolean=
allClassesFromModel(cm)->forAll(cmClass|
nodesOfElement(cmClass).link->select(
oclIsKindOf(Class2Word)

).node->select(role="word")->size>0
)

Note that this constraint does not need the actual content
of the text processor’s repository. This illustrates that some
useful constraints can be enforced without knowing the pre-
cise metamodels of the integrated tools. ToolNet exploits
this observation by implementing the minimalistic meta-
model as the basis for a bus-like integration of COTS tools
such as DOORS, Word, Matlab, StateFlow and MagicDraw.
By exposing JMI interfaces for the traceability models, their
repository can be integrated seamlessly with more expres-
sive repositories such as the one containing the conceptual
and the robustness model elements. The OCL constraint
can thus be executed on the federated repository of the inte-
grated model.

3.2 Automatic Consistency Maintenance

In model-driven engineering, stepwise refinement is sup-
ported by means of automatic model transformations to in-
crease developer’s productivity and to enforce consistency.
CAViT is a MOF compliant framework that extends the
principles of design by contract for the implementation of
model transformations. It allows architects to formalize the
relationship between transformation rules and the consis-
tency constraints they maintain in an object-oriented man-
ner. CAViT is a “general purpose” framework since it can be
applied for both horizontal and vertical transformations and
does not pose limitations on the number of input or output
models of a transformation [7].

Transformation rules are implemented as methods of a
class that holds references to the input and output mod-
els. The behavior of the methods is modeled as story di-
agrams. Story diagrams are the core of the UML based
controlled graph transformation language and are supported
by tools such as Fujaba, MoTMoT and MOFLON. Consis-
tency constraints are implemented as “transformation con-
tracts”. Such a contract is defined by a pair of constraints:
the postcondition describes the effect of a transformation
method on the set of models provided that the precondition
is satisfied.

CAViT extends traditional design by contract by requir-
ing that each postcondition corresponds to an invariant of
the transformation class in which it is contained [8]. By
implementing all desired consistency constraints as such
invariants and postconditions, each instance of a transfor-
mation class can maintain the consistency of its contained
models. More specifically, each time an invariant is violated
for a transformation object, the CAViT engine can call the
transformation method whose postcondition corresponds to
that invariant and whose precondition holds at that point in
time.

3.2.1 User Experience

Suppose that a developer has completed a conceptual model
of the meeting scheduler by doing a noun/verb analysis on
the requirements specification. Now he wishes to optimize
the robustness of the application by building a design model
that respects the model-view-controller principles. There-
fore, he wants to construct a robustness model based on the
main use cases. The developer wants to use his conceptual
model as a basis for the persistent entities of this robustness
model. However, he does not want to clutter the conceptual
model itself with the upcoming design details. Therefore,
he decides to copy all classes from the conceptual model
to the robustness model and mark them as entities. Ideally,
the construction of this initial robustness model from a con-
ceptual model is supported by the development tool. With

4

Figure 5. Control flow of the cm-
Classes2rmEntities method.

CAViT, software architects can build a library of transforma-
tions that developers can apply in a black-box manner. The
following section illustrates how a conceptual model can
be transformed automatically to a minimalistic robustness
model. Application developers would launch this transfor-
mation by one click on a button.

3.2.2 Implementation Challenges

CAViT is built for integration with COTS modeling tools.
As with ToolNet, a particular challenge is that the reposi-
tories of these tools cannot be changed. However, by fol-
lowing suitable guidelines in the design of a transforma-
tion model, a transformation repository can be wrapped
seamlessly around its application model repositories. More
specifically, associations between a transformation class
and a metaclass from the application models should be spec-
ified unidirectionally.

In summary, a software architect needs to provide three
artifacts: (1) a MOF compliant definition of a transfor-
mation class, (2) a declarative consistency contract stating
when a transformation method can establish what kind of
consistency constraint and (3) a constructive body satisfy-
ing that contract.

Figure 5 and 6 show models of the body of the cm-
Classes2rmEntities method contained by the CMconsisten-
tRM class. This method automatically constructs an initial
robustness model from a conceptual model, as discussed in
the previous section (3.2.1). The method starts by copying
all classes and attributes from the conceptual model. For
each attribute, it checks whether its type is contained in the
conceptual model. If so, it sets the type of the copied at-
tribute to a copied class. Otherwise, it sets the type of the
copied attribute to an “external class”. A class is said to be

wodnApplication : UmlPackage

{motmot.constraint=name.equals(this.getApplicationName())}

<<copy>>

cm: Model

<<onCopy>>name : String = "RM"

<<bound>>

stereotypeOnCM : Stereotype

<<bound>>

stereotypeOnRM : Stereotype

<<bound>>

entityStereotype : Stereotype

<<bound>>

applicationModel : Model

classInCM : UmlClass a: Attribute

<<create>>

<<onCopy>>

stereotype*

ownedElement

0..*

ownedElement

0..*

<<create>>

<<onCopy>>

stereotype*

ownedElement*

<<create>>

<<onCopy>>
ownedElement *

<<closure>>
ownedElement*

stereotype*

Figure 6. Graph transformation rule display-
ing what elements are copied from the con-
ceptual to the robustness model.

external when it is not defined in the conceptual model. A
library class for “String” may be external. Once the copy-
ing process is finished, the name of the robustness model
is printed. Since such robustness model is the result of the
copying, this indicates a successful execution of the trans-
formation method. Finally, true is returned as a formal in-
dication of success. If something goes wrong – for exam-
ple: the conceptual model cannot be found in the applica-
tion model of CMconsistentRM – the transformation prints
out an indication of failure and false is returned.

Figure 6 models the behavior of the first state of the story
diagram by showing what elements are copied from the con-
ceptual model to the robustness model. The rule applies the
story diagram syntax for copying subgraphs [9]. It speci-
fies that the root of the copied subgraph is the conceptual
model itself. That model is matched by looking for an el-
ement whose type is Model and that is connected to the
“Conceptual Model” stereotype. Moreover, the rule spec-
ifies that this cm node should be owned by a UML package
whose name is equal to the applicationName attribute of
CMconsistentRM and that is recursively owned by the input
UML model. As soon as cm is matched, the subgraph rep-
resented by its classes and their attributes with the latter’s
types is copied. Implicitly, the transformation engine cre-
ates a traceability link between each element and its copy.
Explicitly again, the rule fragment on Figure 6 connects
each class in the subgraph copy to the “Entity” stereotype.
Additionally, a new link is created from the package con-
taining the application’s models to the node that is copied
from cm. This node is also connected to the “Robustness
Model” stereotype and its name is changed to “RM”. With
other words, the generated robustness model will be added
to a model container, it is decorated with the proper stereo-
type and it gets a new name. A detailed explanation of each
node, link and stereotype on Figure 6 is given in [9] which

5

introduces the copy operator by means of an example simi-
lar to the one used in this paper.

The following constraint illustrates how the postcondi-
tion of the cmClasses2rmEntities method can be expressed
in OCL. It expresses that all classes from the concep-
tual model should correspond to entities in the robustness
model.

let CMconsistentRMcontract(): Boolean=
conceptualmodelTracesToRobustnessmodel() and
allClassesFromModel(cm)->forAll(cc: Classifier |
allClassesFromModel(rm)->exists(rc: Classifier |
this.traces->exists(t2 |
t2.node->exists(cNode | cNode.content=cc)
and t2.node->includes(rNode | rNode.content=rc)

) and
cc.name=rc.name and
rc.hasStereotype("entity") and
cc.attributes()->forAll(ca|
rc.attributes()->exists(ra|
ca.name=ra.name and
ca.type.name=ra.type.name and (
ca.type<>ra.type or (
-- take care of potentially used built-in types
not allClassesFromModel(cm)->includes(ra.type)

)
)

)
)

)
)

The constraint is complex in that it asserts existential and
qualitative properties about a variety of concepts (models,
classes and attributes). This is acceptable for automatically
establishing a global model property in one particular con-
straint violation scenario (or one particular precondition).
However, it is too coarse grained to be associated with a
set of small transformations that maintain parts of the con-
straint in an interactive manner. Therefore, it is decomposed
in the following section.

3.3 Interactive Consistency Maintenance

The two previous sections might create the impression
that all inconsistencies should be corrected automatically.
However a number of authors have argued that incon-
sistencies should be tolerated under certain circumstances
and that overly strict consistency maintenance can even be
“foolish” [10]. Nuseibeh et.al. [11] even argue that each
inconsistency must be treated differently. This is reflected
in their proposed consistency maintenance process consist-
ing of the following phases: (1) monitor for inconsistencies,
(2) diagnose inconsistencies by means of locating, identify-
ing and classifying, and finally (3) handle inconsistencies.
The proposed actions are to ignore, tolerate or resolve an in-
consistency. Tolerating an inconsistency can mean to defer,
circumvent or ameliorate it.

3.3.1 User Experience

ICONS supports the consistency maintenance process by
combining the facilities presented in the previous two sec-
tions. CAViT is used to monitor consistency constraints that
were formalized in OCL. Diagnosis is supported both au-
tomatically and semi-automatically. More specifically, a
model transformation can automatically assess a particu-
lar consistency violation and repair it without developer in-
tervention. However, as an added value to CAViT, ICONS
also enables transformations to present a set of violating
model elements to a developer. Developers can then trans-
form these elements manually or provide parameters to the
CAViT backend. They can also specify that a particular in-
consistency should be ignored by manipulating the ignore-
Constraints property of a traceability link.

A transformation has multiple constraints, each of which
can be satisfied, violated or ignored. This state is visualized
by means of a traffic-light analogy. Each constraint can use
an arbitrary number of traceability links that may be used by
other constraints as well. The state of individual traceabil-
ity links can be computed on-demand. More specifically,
developers can request to highlight all model elements that
cause a particular inconsistency. Based on the ToolNet in-
frastructure, ICONS then allows developers to query for all
links related to those elements.

3.3.2 Implementation Challenges

As pointed out before, the transformation metamodel needs
to enable developers to ignore inconsistencies. Secondly,
ICONS can only offer an interactive user experience when
constraints are checked in a fine-grained manner. Syn-
chronization between fine-grained constraints is realized by
means of different classes of traceability links. More specif-
ically, Figure 7 illustrates that one subclass of Link is pro-
vided for each set of related model element types.

The following OCL fragments illustrate how a part of
the consistency of classes and entities is checked by two
fine-grained constraints:

let eachClassTracesToAnEntity(): Boolean=
conceptualmodelTracesToRobustnessmodel() and
allClassesFromModel(cm)->forAll(cmc|
allClassesFromModel(rm)->exists(rmc|
this.traceabilityLinks->select(
oclIsKindOf(Class2Entity)

)->exists(l|
l.node->contains(cmc) and l.node->contains(rmc)

)
)

)

let classEntity_name_match(): Boolean=
traceabilityLinks->select(oclIsKindOf(Class2Entity))
->forAll(l|
l.ignoreConstraints or l.node->forAll(n1,n2|
n1.content.name=n2.content.name

)
)

6

fix_eachClassTracesToAnEntity_violated_rmExists() : Boolean
generateRMfromCM() : Boolean

CMconsistentRM

(be.ac.ua.fots.transformations)

applicationName : String

Link

(be.ac.ua.fots.metamodels.traceability)

ignoreConstraints : Boolean = false

Attribute2AttributeClass2EnttiyCM2RMModel

LinksOfCMconsistentRM

transformation

*

traceabilityLinks

*

UMLmodelOfTransformation

transformation*

applicationModel1

Figure 7. MOF instance representing the transformation model that defines the structure of the CM-
consistentRM transformation and its traceability links.

Figure 8 models how the the CAViT backend of ICONS
contains callbacks for interacting with developers. The
transformation iteratively selects those classes that are re-
lated to entities with a different name and for which the
traceability link is not allowed to be ignored. For each
pair of class and entity, the system prompts for user inter-
action. More specifically, the user should indicate whether
the inconsistency should be solved automatically, whether it
should be ignored, or whether it should be solved manually.
In the automatic case, the user should indicate whether or
not the class name has precedence over the entity name. In
the manual case, the system highlights the conflicting pair
in the model editor.

The behavior of most states is modeled as story patterns
(primitive graph rewriting rules). Others contain a callback
to one of two MOF compliant user interaction methods: set-
Focus or chooseAlternative. A detailed discussion thereof is
left out due to space restrictions but can be found in an ex-
tended version of this paper [12].

One can observe that there is a strong similarity between
the consistency constraints between nodes that represent (1)
the conceptual model and the robustness model, (2) classes
and entities, and (3) attributes of classes and entities. More
specifically, for each such pair at least the names of the
nodes should be the same. When implementing the con-
straints and the transformations for each pair by OCL and
story diagram models as shown above, the maintenance of
these artifacts becomes problematic if they are not related
by traceability links of some form. On the other hand, treat-
ing all cases by parametrized constraint and transformation
methods may become either too complex (due to all kinds
of conditionals) or too simplistic (when all inconsistencies
are resolved in exactly the same manner). To make the latter
more concrete, the next section shows how the consistency
of our example elements could be maintained fully auto-
matically.

3.4 Triple Graph Grammars

This section illustrates how triple graph grammars can be
used to maintain the consistency between all related model
elements in a fully automatic manner. It will be shown
that the formalism supports the modeling of a large class
of inconsistency resolution strategies in a compact manner.
However, we will also make explicit that it was not designed
for modeling interaction with developers.

3.4.1 Concept

Triple graph grammars are an extension to pair graph gram-
mars aimed at concisely specifying how two metamodel-
based languages should be mapped while maintaining re-
lations between model elements in a third language. Con-
sequently, triple graph grammars operate on models con-
sisting of three related submodels: a source model, a tar-
get model and a correspondence model. A TGG rule dis-
tinguishes between these models by marking nodes with a
� left �, � right � or � map � flag. By creating
such marked nodes in a TGG rule one can concisely specify
how a recurring set of consistency violations between the
source and target models should be corrected. More specif-
ically, one TGG rule corresponds to six primitive graph
rewriting rules [13]: three rules for adapting changes to the
source model and three for adapting changes to the the tar-
get model. To indicate the direction of the change propa-
gation, the former three are called the left-to-right or “for-
ward” rules while the latter are called right-to-left or “back-
ward”. Both groups of rules consist of a creation rule, a
deletion rule and a consistency rule. The former makes
sure that when an element is found in one model, a corre-
sponding element exists in the other model. The second rule
makes sure that when an element is deleted from one model,
its corresponding element is deleted from the other model.
The latter rule makes sure that when attribute updates on an
element in one model trigger a violation of a consistency

7

<<code>>

fixType= chooseAlternative("How should ’"+classInCM.name+"’ be reconciled with ’"+entityInRM.name+"’?", new Object[]{"auto", "ignore", "manual"})

<<code>>

setFocus("Reconcile names manually", new Object[]{classInCM, entityInRM})

Set name of entity to name of class

{motmot.transprimitive=Set name of entity to name of class}

Set name of class to name of entity

{motmot.transprimitive=Set name of class to name of entity}

<<loop>>

Select Violating Classes and Entities

{motmot.transprimitive=Select Violating Classes,

motmot.constraint=classInCM.name!=entityInRM.name}

Set link status to IGNORE

{motmot.transprimitive=Set link status to IGNORE}

<<code>>

topdown= chooseAlternative(..., {"yes", "no"})

lookupStereotypes

{motmot.transprimitive=lookupStereotypes}

true

["auto".equals(fixType)] ["manual".equals(fixType)]

[not classEntity_name_match()]

[classEntity_name_match()]

["yes".equals(topdown)] ["no".equals(topdown)]

<<each time>>

["ignore".equals(fixType)]

Figure 8. Story diagram modeling the reconciliation of a class when its entity has a different name.

constraint related to an element in the other model, that the
element in the other model is updated.

3.4.2 Application to Example

Figure 9 shows a TGG rule for keeping a class in the con-
ceptual model consistent with an entity in the robustness
model. Note that this rule is dependent on the rule that keeps
the nodes representing the conceptual and robustness mod-
els consistent with one another. To keep the TGG rule sim-
ple, Link is supposed to have a direct to-many association
to the ModelElement metaclass of the UML metamodel (in-
stead of having an intermediate Node metaclass like in the
more realistic OCL fragments shown before). ModelEle-
ment is the superclass of Model, UmlClass and all other
model elements.

The rule considers the conceptual model as the source
(or left) model and the robustness model as the target (or
right) model. The rule matches all cm nodes connected to
an rm node by means of an m2m link of type CM2RM. The
cm node represents an element of type Model within the
host graph (a UML model that contains conceptual mod-
els, robustness models and metadata expressed as profiles).
By requiring that cm is connected to stereotypeOnCM, the
rule makes sure that cm corresponds to a conceptual model.
Similarly, rm represents a robustness model. The left
ownedElement association end is connected to classInCM,
a node representing a class in the conceptual model. In the
target model, entityInRM should represent an entity. This

<<bound>>
stereotypeOnCM: Stereotype

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

<<create>>
<<right>>

entityInRM: UmlClass

<<create>>
<<left>>

classInCM: UmlClass <<create>>
<<map>>

c2e: Class2Entity

<<map>>
m2m: CM2RM

<<right>>
rm: Model

<<left>>
cm: Model

{classInCM.name=entityInRM.name}

<<right>>

node

*<<left>>

node
*

<<create>>
<<right>>

node

*

<<create>>
<<left>>

ownedElement*

<<create>>
<<right>>

ownedElement *

<<create>>
<<left>>

node
*

<<create>>
<<right>>

stereotype *

<<left>>

stereotype*

<<right>>

stereotype *

Figure 9. TGG Rule for classes and entities.
As on Figure 7, CM2RM is supposed to sub-
class Link.

8

is realized by asserting that entityInRM is of type UmlClass
and that it is connected to the entityStereotype node. Note
that the nodes of type Stereotype are assumed to be bound in
previous rewrite rules. Once a match against this structure
has been found, the rule asserts that the name of the class
in the conceptual model should always be the same as the
name of the entity in the robustness model.

As stated, the behavioral semantics of TGG rules is de-
fined by six primitive (called “operational”) rewrite rules:
three forward and three backward rules. Figures 10 to
12 present the forward creation, forward deletion and for-
ward consistency rules derived from the example TGG rule
shown on Figure 9. The forward creation rule creates an en-
tity represented by node entityInRM and a traceability link
(node c2e) for each class (node classInCM) in the concep-
tual model (node cm) that is not linked (node c2e_nac) to
an entity (node entityInRM_nac) in the robustness model
(node rm) yet. The forward deletion rule deletes all entities
represented by node entityInRM and their traceability link
(node c2e) from the robustness model (node rm) if there
doesn’t exist a class (node classInCM) on the other end of
the traceability link. The forward consistency rule is trig-
gered when a class is linked to an entity with a different
name. The rule restores the consistency between such vio-
lating elements by overwriting the name of the entity with
the name of the class.

The backward creation, deletion and consistency rules
propagate changes in the other direction but using an equiv-
alent match and update approach. They are omitted from
this paper due to space considerations.

3.5 Discussion

This section makes a brief comparison of the power and
limitations of CAViT, ICONS and triple graph grammars.

CAViT allows one to model consistency contracts in the
side-effect-free Object Constraint Language. The behavior
of the methods that maintain those contracts is modeled by
controlled graph rewriting rules, which consist of a set of
primitive graph rewriting rules and a control flow diagram.
When using the triple graph grammar formalism, six prim-
itive rewriting rules are generated automatically from one
triple rule by a higher-order transformation. This genera-
tive aspect makes triple graph grammars obviously a more
productive formalism when considering the constraint vio-
lation scenarios covered by the six primitives.

However, one cannot always assume that the six gen-
erated rules cover the intentions of a transformation writer
exactly. Instead, subtle modifications may be required, de-
veloper interaction may need to be added and some auto-
matic transformation rules may need to be replaced by man-
ual transformations. In fact, recent work from the inventors
of triple graph grammars confirms that a fully automatic or

<<bound>>
stereotypeOnCM: Stereotype

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

<<negative>>
entityInRM_nac: UmlClass

<<create>>
entityInRM: UmlClass

name : String = cmc.name

<<negative>>
c2e_nac: Class2Entity

classInCM: UmlClass

<<create>>
c2e: Class2Entity

m2m: CM2RMcm: Model rm: Model

<<create>>

ownedElement *

node

*

<<create>>

node*

node
*

<<create>>

node

*

<<create>>

stereotype *

node
*

node*ownedElement* ownedElement *

stereotype*

stereotype *

stereotype *

Figure 10. Forward Creation Rule for classes
and entities. Nodes marked as � negative �
should not occur in the host graph in order to
trigger a rewrite rule.

<<bound>>
stereotypeOnCM: Stereotype

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

<<destroy>>
entityInRM: UmlClass

<<negative>>
classInCM: UmlClass

<<destroy>>
c2e: Class2Entity

m2m: CM2RMcm: Model rm: Model

node
*

node

*

<<destroy>>

node

* <<destroy>>

node
*

ownedElement* ownedElement *

<<destroy>>
stereotype *

stereotype* stereotype *

Figure 11. Forward Deletion Rule for classes
and entities.

entityInRM: UmlClass

name : String = classInCM.name

<<bound>>
stereotypeOnCM: Stereotype

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

classInCM: UmlClass c2e: Class2Entity

m2m: CM2RMcm: Model rm: Model

{not (classInCM.name=entityInRM.name)}

node

*

node
*

node

*
node

*

ownedElement* ownedElement *

stereotype* stereotype *

stereotype *

Figure 12. Forward Consistency Rule for
classes and entities.

9

batch application of transformation rules is not always de-
sirable [14]. Moreover, a TGG based consistency mainte-
nance tool developed in the context of the ISILEIT project
supports various user interaction scenario’s on the imple-
mentation level [13]. This illustrates once more that de-
veloper interaction is essential to make consistency mainte-
nance tools usable in practice.

Therefore, we propose to apply the ICONS principles to
the generated rewrite rules by embedding them in a control
flow diagram. This allows one to express that certain rules
should only be applied under particular conditions. More-
over, ICONS methods like chooseAlternative and setFocus
can be used to model what information is gathered from
developers and what model elements are highlighted when
developers are to restore a consistency constraint manually.

When adapting the transformations generated from TGG
rules as such, one is actually applying model refinement to
transformation models. To manage the complexity of the in-
creasing number of related transformation models, one can
maintain traceability links between a high-level TGG rule
and its derived primitive rules. The following section dis-
cusses that in the overall set of models, one can then identify
two dimensions of traceability.

4 Two-Dimensional Traceability

This section describes an architecture for modeling tools
that allow one to maintain traceability links in two dimen-
sions: in the first dimension, links allow one to reason about
relations between application models while in the second
dimension, links allow one to reason about relations be-
tween transformations that maintain the application models
consistent.

4.1 Application to Example

This section presents how a software architect special-
ized in development processes based on conceptual and ro-
bustness modeling may want to adapt the rewrite rules gen-
erated from the TGG rule that models the relationship be-
tween classes and entities from a high level of abstraction.

The architect decides that there should be cascading
deletion behavior from classes to entities. Therefore, he al-
lows the forward deletion rule shown on Figure 11 to be
active at all times. However, the architect decides that when
an entity is removed from a robustness model, the corre-
sponding class should not be automatically removed from
the conceptual model. Instead, the modeling tool should
allow the developer to choose between two alternatives: ei-
ther the class is removed from the conceptual model, or the
entity is regenerated from its class. Therefore, the architect
constructs an activity diagram expressing this behavior. The
activity diagram contains:

• a state calling the chooseAlternative method to query
the developer for his intentions,

• two story patterns: the former is based on the back-
ward deletion rule derived from the TGG rule shown
on Figure 9 while the latter is based on the forward
creation rule shown on Figure 10.

The architect can structure his transformation models such
that the TGG rule, its derived primitive rules and the man-
ually created activity diagram are grouped together. He
thereby applies some kind of ad-hoc traceability technique
corresponding to the first case (a) of Figure 1. However,
there are several reasons for creating a more explicit kind of
traceability relationship between the related transformation
models:

• Scalability: there may not always be an optimal pack-
age structure that reflects how large sets of transforma-
tion models are related to one another.

• Expressiveness: a dedicated traceability tool such as
ToolNet allows one to create traceability links across
tools based on different metamodels.

• Queryability: as illustrated in section 3.1.2, even sim-
ple traceability models allow one to define useful
queries for checking consistency constraints. A trace-
ability model is also a structured basis for ad-hoc
queries like “retrieve all activity diagrams making use
of the forward creation rule derived from TGG rule X”.

• Low Cost: an appropriate architecture allows one
to apply a traceability tool designed with application
models (dimension 1) in mind in the context of the
management of links between transformation models
(dimension 2) as well. The following section presents
such an architecture.

4.2 Reference Architecture

This section presents a reference architecture supporting
traceability in the two discussed dimensions. The architec-
ture is based on a minimalistic prototype we are construct-
ing to demonstrate the proposed solution to the case study
in practice.

A key design characteristic of this prototype is the appli-
cation of UML profiles as a light-weight metamodeling ap-
proach. UML profiles allow one to customize editors based
on the standard UML metamodel to the look-and-feel of
another visual language. We have designed the prototype
as such since today’s heavy-weight metamodel-independent
editors [15] still either require too much investment in con-
figuring the concrete syntax or do not comply to the MDA
standards compatible with CAViT.

10

Person

CM

<<Entity>>

Person

RM

Applications
Traceability

ICONS

CMconsistentRM

Primitive 2
Primitive 1

TGG

Class2Entity:

TGG Rule

Forward CreationForward DeletionForward DeletionForward DeletionForward Deletion

Transformation
Traceability

Forward Creation ...

Figure 13. Reference architecture of a consistency maintenance tool-chain using 2D traceability.

This design decision implies that the CM, RM, ICONS
and TGG repositories physically correspond to only one
MOF repository, being the JMI compliant repository of the
MagicDraw UML tool. Thanks to that, ToolNet only needed
to be extended with a JMI based link repository, a reposi-
tory communication component (called a Tool Link [16])
for JMI and a user interface plugin for MagicDraw. The
disadvantage is that the higher order transformation for nor-
malizing triple graph grammars to operational rules needs to
be implemented again in a UML profile and MOF compli-
ant manner. When Fujaba would be supported by ToolNet,
we could reuse an existing Fujaba plugin for triple graph
grammars instead [17].

The prototype relies on the ToolNet widgets for visual-
izing traceability links in the two dimensions. Industrial
validation of ToolNet indicated that end-users prefer table-
based widgets [16] over a graph-based tool like Fujaba’s
dynamic object browsing (DOBS [18]). However, since the
application of DOBS in a debugging context seems promis-
ing [19], we would like to learn to what extent a graph-based
visualization of transformations and their traceability links
can improve the development experience of model transfor-
mation writers. Therefore, we are constructing a JMI based
storage layer for DOBS which will allow one to browse and
update the abstract syntax graphs of all the discussed mod-
els (conceptual, robustness, transformation, traceability, ...)
in a uniform manner.

Links from the application dimension are managed by
the repository shown at the top part of Figure 13, between
the repositories containing the conceptual model (CM) and
the robustness model (RM). Links from the transformation
dimension are managed by the repository shown on the bot-
tom left part. The link shown at the bottom of this repos-
itory is used to relate a triple graph grammar rule with its
six derived operational rules. The link above relates such
an operational rule to a primitive rewrite rule embedded in
an activity diagram from the ICONS repository.

5 Conclusion

Software models are expressed in a variety of languages
with a variety of tools. It is widely accepted that the man-
agement of inconsistencies that can arise within and be-
tween such models requires a means to describe consistency
constraints, detect violations and correct the models accord-
ingly.

Unfortunately, today’s model-driven engineering tools
focus on the fully automatic transformation of software
models and lack essential support for interacting with de-
velopers. This paper presented some lessons learned from
building ICONS, a MOF compliant platform for the visual
development of interactive consistency maintenance soft-
ware. By modeling transformations in OCL and story dia-
grams, we identified the need for a more abstract formalism.
While formalisms such as triple graph grammars already al-
lowed one to express a general consistency constraint in a
concise and visual manner, the derived tools encoded devel-
oper interaction in their low-level implementation language.

This motivated the integration of triple graph grammars
with ICONS which results in the use of traceability links in
two dimensions. The new (second) dimension consists of
links supporting the stepwise refinement of abstract trans-
formation models into operational transformation models.
Essentially, this illustrates that model-driven engineering
techniques can be used for managing the complexity aris-
ing within tools supporting model-driven engineering.

Acknowledgements

This work has been sponsored by the European research
training network “Syntactic and Semantic Integration of Vi-
sual Modeling Techniques (SegraVis)” through the Univer-
sity of Antwerp.

11

References

[1] IEEE, editor. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries.
Institute of Electrical and Electronics Engineers, 1990.

[2] A. v. Lamsweerde and R. Darimont and P. Mas-
sonet. The Meeting Scheduler System - Problem
Statement. Technical report, Université Catholique de
Louvain - Département d’Ingénierie Informatique, B-
1348 Louvain-la-Neuve (Belgium), 1992.

[3] M.S. Feather, S. Fickas, A. Finkelstein, and A. van
Lamsweerde. Requirements and specification exem-
plars. Automated Software Engineering, 4(4):419–
438, 1997.

[4] Takako Nakatani, Tetsuo Tamai, Atsushi Tomoeda,
and Harumi Matsuda. Towards Constructing a Class
Evolution Model. In Fourth Asia-Pacific Software En-
gineering and International Computer Science Con-
ference, page 131, Clear Water Bay, Hong Kong, De-
cember 1997. IEEE Computer Society.

[5] Doug Rosenberg and Kendall Scott. Use case
driven object modeling with UML: a practical ap-
proach. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[6] Victor R. Basili and Barry Boehm. Cots-based sys-
tems top 10 list. Computer, 34(5):91–93, 2001.

[7] Tom Mens and Pieter Van Gorp. A taxonomy of model
transformation. In Proc. Int’l Workshop on Graph and
Model Transformation, 2005.

[8] Pieter Van Gorp and Dirk Janssens. CAViT: a
consistency maintenance framework based on visual
model transformation and transformation contracts. In
J. Cordy, R. Lämmel, and A. Winter, editors, Trans-
formation Techniques in Software Engineering, num-
ber 05161 in Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2005.

[9] Pieter Van Gorp, Hans Schippers, and Dirk Janssens.
Copying Subgraphs within Model Repositories. In
Roberto Bruni and Dániel Varró, editors, Fifth Inter-
national Workshop on Graph Transformation and Vi-
sual Modeling Techniques, Electronic Notes in The-
oretical Computer Science, pages 127–139, Vienna,
Austria, 1 April 2006. Elsevier.

[10] Anthony Finkelstein. A foolish consistency: Tech-
nical challenges in consistency management. In
Proceedings of the 11th International Workshop on
Database and Expert Systems Applications, 2000.

[11] Bashar Nuseibeh, Steve Easterbrook, and Alessandra
Russo. Leveraging inconsistency in software develop-
ment. Computer, 33(4):pp. 24–29, 2000.

[12] Frank Altheide, Pieter Van Gorp, and Dirk Janssens.
ICONS: an interactive consistency maintenance plat-
form. Technical report, Universiteit Antwerpen, De-
partment of Mathematics and Computer Science, 2020
Antwerpen, Belgium, 2006.

[13] Sven Burmester, Holger Giese, Jörg Niere, Matthias
Tichy, Jörg P. Wadsack, Robert Wagner, Lothar Wen-
dehals, and Albert Zündorf. Tool integration at the
meta-model level: the Fujaba approach. International
Journal on Software Tools for Technology Transfer,
6(3):203–218, August 2004.

[14] A. Königs. Model Transformation with Triple Graph
Grammars. In Model Transformations in Practice
Satellite Workshop of MODELS 2005, Montego Bay,
Jamaica, 2005.

[15] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and
Gabriele Taentzer. Generation of visual editors as
eclipse plug-ins. In ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering, pages 134–143, New York, NY,
USA, 2005. ACM Press.

[16] F. Altheide, H. Dörr, and A. Schürr. Requirements
to a Framework for sustainable Integration of System
Development Tools. In H. Stoewer and L. Garnier, ed-
itors, Proc. of the 3rd European Systems Engineering
Conference (EuSEC), pages 53–57, Toulouse, 2002.
AFIS PC Chairs.

[17] Lars Grunske, Leif Geiger, and Michael Lawley.
A Graphical Specification of Model Transformations
with Triple Graph Grammars. In First European Con-
ference Model Driven Architecture - Foundations and
Applications, number 3748 in Lecture Notes in Com-
puter Science, pages 284–298. Springer, 7 November
2005.

[18] Leif Geiger, Christian Schneider, and Albert Zündorf.
Statechart Modeling with Fujaba. In Proc. 2nd In-
ternational Workshop on Graph-Based Tools, Rome,
Italy, October 2004. Satelite event of ICGT.

[19] Leif Geiger. Design Level Debugging mit Fujaba.
In Informatiktage, Bad Schussenried, Germany, 2002.
der Gesellschaft für Informatik.

12

