
Integrating a

Declarative with an Imperative

Model Transformation Language

Pieter Van Gorp, Olaf Muliawan,

Dirk Janssens

September 2006

Technical Report 2006-12

University of Antwerp

Department of Mathematics & Computer Science

Division of Computer Science

Middelheimlaan 1,

2020 Antwerpen, Belgium

Integrating a Declarative with an Imperative Model
Transformation Language

Pieter Van Gorp, Olaf Muliawan, Dirk Janssens

Department of Mathematics and Computer Science
University of Antwerp

{pieter.vangorp,olaf.muliawan,dirk.janssens}@ua.ac.be

Abstract. By using a small, yet complex, case study as a model transformation
language benchmark, advantages and limitations of several language paradigms
can be identified. On the one hand, declarative languages only support the spec-
ification of constraints that need to be maintained by a transformation. This lim-
itation enables engines to apply default transformation strategies for handling
common cases of constraint violation. On the other hand, imperative languages
support the explicit specification of model updates. This additional expressive-
ness comes at the cost of more verbose specifications. Therefore, this paper pro-
poses a new, hybrid, transformation language that combines the advantages of
two legacy languages from these two categories.

1 Introduction

In this paper, we use Model Driven Architecture (MDA) technologies such as Unified
Modeling Language (UML) profiles, the Meta-Object Facility (MOF) and the Object
Constraint Language (OCL) for improving the language support for the development
of model transformations. More specifically, we present the use of a new, hybrid, trans-
formation language in the context of a small case study. By limiting the size of the case
study, we are able to focus on the issues that challenge today’s state-of-the-art trans-
formation tools. One particular challenge that challenges today’s graph rewriting tools
is developer interaction: tools supporting declarative languages such as Triple Graph
Grammars (TGGs [15]) are usually limited to batch-transformations or only support a
fixed interaction pattern [4]. Tools supporting imperative transformation languages such
as Story Diagrams [2] can be used for implementing any kind of interaction scenario
but the transformation models tend to be rather low-level [10].

This paper is organized as follows: Section 2 introduces the exemplary models that
are used as a guideline throughout this paper, Section 3 explains why model manage-
ment is a graph transformation problem and introduces the reader to the various trans-
formation styles from this field. Section 4 presents an imperative and a declarative graph
transformation solution to the presented case study. Based on the problems identified in
the previous Section, Section 5 covers the main contribution of this paper by introduc-
ing a concrete application of a new, hybrid, transformation language. After pointing to
related work in Section 6 and summarizing the lessons learned in Section 7, the paper
concludes.

2 Case Study: Conceptual and Robustness Models

In order to compare various model transformation approaches, an established case study
based on the requirements of a Meeting Scheduler system is used throughout our work.
The case study was proposed by Van Lamsweerde et al. [1] as a benchmark for require-
ments elicitation and software specification techniques. The problem statement of the
benchmark was published deliberately imprecise and incomplete.

The requirements specification distinguishes between different conflict types and
describes ways of resolving them. Subsection 2.1 presents a conceptual model that for-
malizes the concepts, the associations and their multiplicities from the problem domain.
Subsection 2.2 presents a robustness model for the “confirm meeting” use case sce-
nario. The fragments in this paper should merely illustrate some realistic dependencies
between models in different languages and should not be regarded as a complete or
stable specification of a meeting scheduler.

2.1 Conceptual Model

Figure 1 shows a conceptual model (CM) of a Meeting Scheduler application, specified
in UML syntax. At the conceptual level, analysts are free to use constructs such as asso-
ciation classes, views, and other language features. Such features may not be supported
directly by the implementation language but they allow one to represent the problem
domain in a way as close as possible to one’s perception of reality.

Fig. 1. Conceptual Model of a Meeting Scheduler application.

A complete conceptual model contains all relevant nouns and verbs from a problem
domain as classes and operations.

2.2 Robustness Model

The model-view-controller (MVC) pattern has been found beneficial for system evolv-
ability. Therefore, Rosenberg and Scott propose to move from analysis to design by
creating robustness models [12]. User interface screens are represented by boundary
objects (or interfaces), persistent classes from the conceptual model are represented by

2

entities while application behavior is encapsulated by control objects (or services). A
set of architectural rules (like “only services are allowed to access entities”) assists de-
velopers to create an evolvable design that is robust by localizing changes. Figure 2
shows a robustness model (RM [12]) of the application under study. Note that the entity
Schedule corresponds to the class Schedule from Figure 1.

Fig. 2. Robustness Model of a Meeting Scheduler application.

The model describes the way a meeting can be confirmed by an initiator. After log-
ging in, the initiator is directed to the main user interface screen of the application.
There, he can select a particular meeting and click the “confirm meeting” button. This
action triggers an update of the meeting status and a booking of the meeting location.
Finally, the success of the use case is confirmed by sending a mail to all meeting atten-
dees.

2.3 Consistency Constraint

An interesting consistency constraint between conceptual and robustness models is that
all classes from the conceptual model should correspond to entities in the robustness
model. These classes should “roughly” have the same attributes. Types of corresponding
attributes can be contained in the conceptual and robustness model respectively or they
can be imported from an external “library” model (or package).

3 Consistency Maintenance based on Graph Transformation

This paper makes extensive use of graph transformation. Therefore, this section intro-
duces the reader to the basics and different flavors of graph transformation that are of
interest to a model-driven software engineer.

3.1 Model Transformation as Graph Transformation

The data definition languages (like OMG’s MOF and Eclipse’s ECORE) for modern
model repositories (like NetBeans’s MDR and Eclipse’s EMF) are object-oriented. Con-

3

sequently, model repositories can be perceived as object-oriented databases. The data
instances in a repository can be perceived as graphs with objects taking the role of at-
tributed nodes. Association, containment, inheritance and other relationships take the
role of edges. Transforming data in repositories can thus be perceived as a graph trans-
formation activity. The relation between the contents of a repository and a graph are
discussed more concretely in the context of Figure 6 from [5] or Figure 3 from [18].

A basic graph transformation system is defined with a set of graph production rules,
where a production rule consists of a left-hand side (LHS) graph and a right-hand side
(RHS) graph. Such rules are the graph equivalent of term rewriting rules, i.e., intuitively,
if the LHS graph is matched in the host graph, it is replaced by the RHS graph.

3.2 Imperative Transformations: Controlled Graph Transformation

In controlled graph rewriting, rules can be embedded in a control flow consisting of
conditionals and loops. Controlled graph transformation rules correspond to methods
that contain a state-based control flow and that are able to call each other while passing
nodes as parameters.

Throughout this paper, the UML profile for Story Diagrams [13] is used. The Story
Diagram language consists of a UML based syntax with the semantics of controlled
graph rewriting. Graph schemata are encoded as UML class diagrams. Primitive graph
rewriting rules (called story patterns) are encoded in UML’s class diagram syntax. A
class represents a node to be matched (or object template in QVT terminology [9]) while
an association represents an edge to be matched. A colon in the class name allows one
to separate the name of a node from the type to be matched.

While in PROGRES [14], a language that historically precedes Story Diagrams, the
LHS and RHS are shown in distinct parts of a rewrite rule, a story pattern shows all ele-
ments in one compound figure. As an advantage, elements occuring in both the LHS and
RHS have to be displayed only once. Nodes and edges marked with the� destroy �
stereotype appear only on the left-hand side of the corresponding graph transformation.
Such elements are deleted. The stereotype� create � marks elements only used on
the right-handside. Such elements are created.

The control flow that embeds the story patterns is encoded in UML’s activity di-
agram syntax. In controlled graph rewriting, bound nodes are nodes that are already
known to the system either from previous matchings or because they are passed as
parameters to the transformation rule. Thus, a bound node does not trigger the compu-
tation of a new match but it reuses its old match.

3.3 Declarative Transformations: Graph Grammars

A graph grammar is defined as a set of rules that are executed in parallel until a fixed
point is reached. Graph grammars are a declarative formalism since they do not specify
a state-based modification of one graph into another one. Therefore, one graph grammar
can be used:

– not only for generating one graph from another one,
– but also for checking if an existing graph is consistent with another one.

4

Pair Graph Grammars were introduced in the early seventies to specify graph-to-graph
translations. A pair grammar thus consists of rules which modify two participating
graphs. Triple Graph Grammars (TGGs) were introduced in the early nineties as a for-
malism for maintaining bidirectional consistency constraints between models originat-
ing from different software engineering tools [15].

Although TGG rules can be executed directly by a Java interpreter, their opera-
tional semantics is usually clarified by presenting the mapping of a TGG rule to conven-
tional rewrite rules. Burmester et al., for instance, map TGG rules to six primitive graph
rewriting rules [16]: three rules for adapting changes to the source model and three for
adapting changes to the the target model. To indicate the direction of the change prop-
agation, the former three are called the left-to-right or “forward” rules while the latter
are called right-to-left or “backward”. Both groups of rules consist of a creation rule,
a deletion rule and a consistency rule. The former makes sure that when an element is
found in one model, a corresponding element exists in the other model. The second rule
makes sure that when an element is deleted from one model, its corresponding element
is deleted from the other model. The latter rule makes sure that when attribute updates
on an element in one model trigger a violation of a consistency constraint related to an
element in the other model, that the element in the other model is updated. In fact, an
additional rule is needed to create traceability links between model elements that are
consistent with one another but were not mapped to one another yet [15].

4 Balancing between Declarative and Imperative

The case study, briefly presented in section 2, challenged our use of OCL and Story Di-
agrams in that bidirectional consistency constraints could not be modeled concisely. A
bidirectional consistency constraint can be maintained by a pair of Story Diagram trans-
formations but this is undesirable due to the verbose specification style. The case study
also challenged the triple graph grammar formalism on various aspects. For example,
the implementation of a transformation that supported a realistic developer interaction
process required us to add control structures between TGG rules (or implement them
on a lower level of abstraction [17]).

4.1 Story Diagrams with OCL: too low-level

This subsection illustrates how Story Diagrams and OCL can be used for the implemen-
tation of a transformation that maintains the consistency constraint that was introduced
informally in Subsection 2.3. Although a set of fine-grained rules with clear pre- and
postconditions can properly establish the constraint in a large number of violation sce-
nario’s, such a set easily becomes hard to maintain for transformation writers.

Application to Case Study As a first example of a consistency constraint, consider the
OCL helper operation eachClassTracesToAnEntity. It tests whether each class from the
conceptual model traces to an entity in the robustness model:

5

89 -- Evaluate whether each class in the conceptual model traces to
90 -- an entity in the robustness model
91 let eachClassTracesToAnEntity(): Boolean=
92 conceptualmodelTracesToRobustnessmodel() and -- ’rm’ not Undefined
93 allClassesFromModel(cm)->forAll(cmc|
94 allClassesFromModel(rm)->exists(rmc|
95 this.traceabilityLinks->select(oclIsKindOf(Class2Entity))->exists(l|
96 l.node->contains(cmc) and
97 l.node->contains(rmc)
98)
99)

100)

A transformation system should search for all classes unrelated to an entity and
either generate the entity automatically or allow the user to link the class to an existing
entity manually. Figure 3 shows how a Story Diagram can model the behavior for the
second case.

<<code>>
setFocus("Associate with an entity", new Object[] {classInCM});

Is the Class related to an Entity?
{motmot.transprimitive=Is the Class related to an Entity?}

lookupStereotypes
{motmot.transprimitive=lookupStereotypes}

<<loop>>
For all classes in the CM

{motmot.transprimitive=For all classes}

true

[not eachClassTracesToAnEntity()]

<<success>>

<<each time>>

<<failure>>

[eachClassTracesToAnEntity()]

Fig. 3. Story Diagram for a transformation that establishes the eachClassTracesToA-
nEntity constraint on existing models.

The transformation iteratively looks for violating classes in the conceptual model
by iterating (due to the� loop � stereotype) over all classes in the conceptual model.
For every (due to the � each time � stereotype) match, the transformation checks
whether the matched class is related to an entity. If the latter “Is the Class related to
an Entity?” pattern doesn’t match, the transformation has found a violating class: the
transition with the� failure � stereotype is triggered and the code state containing
a setFocus call highlights this problem such that the developer can solve it manually.
The setFocus method is part of the ICONS framework and allows the transformation
writers to interact with the modeler. More specifically, the method presents a dialog
with the first parameter as a message to the modeler. The second parameter is an array
of model elements that should provide the modeler some context for assessing and
solving the problem. If the “Is the Class related to an Entity?” pattern does match,
the transition with the � success � stereotype is triggered and the transformation

6

continues with the next class in the conceptual model. After visiting all such classes,
the transformation returns true if it has established its postcondition, which corresponds
to the eachClassTracesToAnEntity constraint, or resumes the iteration over violating
classes.

wodnApplication : UmlPackage
{motmot.constraint=name.equals(this.getApplicationName())}

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

<<bound>>
applicationModel : Model

<<bound>>
classInCM : UmlClass

entityInRM: UmlClass

c2e: Class2Entity

rm: Model

en: Nodecn: Node
stereotype

*

stereotype

*

ownedElement*content 1

ownedElement*

content1

<<closure>>
ownedElement *

node* node*

Fig. 4. Story pattern modeling the transformation behavior in state “Is the Class related
to an Entity?”.

Figure 4 shows how the behavior of the second state can be modeled as a primitive
graph rewrite rule (or story pattern). The pattern can be read as starting from the bound
applicationModel node. It searches for the package wodnApplication containing the
robustness model rm. The rm node should be connected to a stereotype that has been
bound in the first state of the transformation. The c2e node represents a traceability link
between an entity in rm and the class that was bound in the� loop� state called “For
all classes in the CM”. Figure 5 from [18] models the transformation that generates an
entity in an empty robustness model from a class in an existing conceptual model.

As a second sample consistency constraint, consider classEntity_name_match. This
OCL helper operation checks for all elements satisfying eachClassTracesToAnEntity
whether the names of a class and its related entity correspond.

102 -- Evaluate whether the classifiers (including entities) of all nodes related by
103 -- a Class2Entity link have the same name
104 let classEntity_name_match(): Boolean=
105 traceabilityLinks->select(oclIsKindOf(Class2Entity))->forAll(l|
106 -- for all relevant links:
107 l.ignoreConstraints or -- user has marked that the name can be ignored, or
108 l.node->forAll(n1,n2| -- for any couple of nodes,
109 -- their content elements should have the same name
110 n1.content.name=n2.content.name
111)
112)

Note that this constraint implements the fundamental concept of “tolerated incon-
sistencies” as described by Balzer [3]. More specifically, on line 107 it specifies that

7

no further checking is required if the user has set the ignoreConstraints property of the
Class2Entity link to true. Figure 5 shows how the ignoreConstraints property is defined
on the Link metaclass. By exposing this property to developers, a consistency mainte-
nance system allows them to postpone the resolution of particular inconsistencies. To
this extent, we are developing a MagicDraw plugin that can highlight model elements
on demand and that provides query and update facilities based on the ignoreConstraints
property [10].

The Link and Node metaclasses are part of a metamodel for traceability. Link’s four
subclasses are part of a transformation model that extends the traceability metamodel.
As illustrated by the above OCL constraints, these subclasses provide a context for
constraints that are specific to relationships between metaclasses of the languages of
the transformed models.

CMconsistentRM
{javax.jmi.substituteName=C Mconsistent R M}

applicationName : String

fix_eachClassTracesToAnEntity_violated_rmExists() : Boolean
...

Link

ignoreConstraints : Boolean = false

Attribute2AttributeClass2Enttiy

Node

role : String

CM2RM CP2RP

Model

LinksOfCMconsistentRM

transformation

*

traceabilityLinks

*

NodesOfLinklink

1

node

*

UMLmodelOfTransformation
transformation*

applicationModel1

Fig. 5. MOF instance defining the structure of the CMconsistentRM transformation and
its traceability links.

Problem Identification From fix_ClassEntity_name_match_violated one expects that
it searches for all classes linked to an entity with a different name. For these conflicting
pairs, a transformation can:

– update the name of the class automatically, or
– update the name of the entity automatically, or
– ask the user the give his explicit permission to ignore the inconsistency, or
– ask the user to change the names of class and/or entity manually.

Moreover, next to a change of name, the related class can be deleted, etc. Because
these violations can occur for all metaclasses that are constrained in two directions,
they should not be modeled explicitly by the transformation writer but should be part of
the transformation modeling language. In the next subsection, consider a formalism that
provides default reactive behavior to a lot of bidirectional contraint violation scenario’s.

4.2 Triple Graph Grammars: too generic

Triple Graph Grammars are a natural alternative for Story Diagrams when bidirectional
constraints need to be maintained. This subsection illustrates how the constraint defined
on conceptual and robustness models can be maintained by a set of TGG rules. We
will then identify where the TGG formalism needs to be extended or complemented to
complete the case study in a satisfactory manner.

8

Application to Example The rule on Figure 6 specifies that at all times, classes
contained in a package from the robustness model should be mapped to classes with
the same name in a corresponding package in the robustness model. Additionally, the
classes in the robustness model should be decorated with the� entity � stereotype.

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

{motmot.constraint=name.equals("Entity")}
entityStereotype : Stereotype

<<bound>>
this: CMconsistentRM

<<create>>
<<right>>

entityInRM: UmlClass

<<create>>
<<left>>

classInCM: UmlClass <<create>>
<<map>>

c2e: Class2Entity

<<left>>
cp: UmlPackage <<right>>

rp: UmlPackage
<<map>>
p2p: CP2RP

cm: Model rm: Model

{classInCM.name=entityInRM.name}

<<create>>

<<create>>

<<create>>

node

*

node
*

node

*

<<create>>
<<right>>

stereotype *

node

*

<<create>>
<<left>>

ownedElement*

<<create>>
<<right>>

ownedElement*

stereotype

*

stereotype

*

ownedElement*ownedElement*

traceabilityLinks

*

traceabilityLinks *

Fig. 6. TGG rule for classes and entities.

Note that in contrast to the rewrite rules from the previous subsection, the rule from
Figure 6 is not embedded in a control flow. The only bound node is a this reference to
the CMconsistentRM class. From this context, all other nodes are matched.

The nodes and edges that are decorated with the� create� stereotype are part of
the RHS of the TGG rule. TGG nodes can be devided in four groups, based on whether
they carry one of the� left�,� map� or� right� stereotypes. Elements that
do not carry any of the three stereotypes are part of the overall host graph. Elements
carrying the � left �or � right � stereotypes are part of subgraphs representing
the two models that need to be kept consistent. Elements carrying the � map �
stereotype are part of the interconnection (sub)graph (or “traceability model”). They
are displayed with a hexagon symbol.

As an illustration that the semantics of a TGG rule is more declarative than a con-
ventional rewrite rule, consider the semantics of Figure 6. With conventional rewrite
semantics (or without taking the � left �, � map � and � right � stereo-
types into account), three new nodes would be created after finding the match described
above. No more checking would be performed afterwards. With TGG semantics how-
ever, the rule will create a consistent entityInRM node when only the classInCM node
is available. Vice versa: a new classInCM node node can be created from an existing
entityInRM node. When both the classInCM and entityInRM nodes exist, but they are
in conflict, the TGG rule will use the path over the c2e node to navigate between con-
flicting nodes in order to make them consistent again. This can involve changing the
name of the classInCM or entityInRM node or changing the set of stereotypes attached
to these nodes. Finally, when a pair of consistent classInCM and entityInRM nodes exist
without a path over c2e connecting them, the TGG rule will create such a path.

9

The second and final conventional TGG rule presented here ensures that the types of
corresponding attributes are consistent. The rule illustrates the issue of tracking the cre-
ation of edges. Since the underlying graph formalism does not support edges pointing
to edges, the at2at node points to the (ca,cat) and (ra,rat) nodes respectively instead of
pointing to the RHS edge between these nodes. Note that the management of the Link
classes by the CMconsistentRM class is implemented in another view that is left out
due to space considerations.

<<create>>
<<map>>

at2at: AttrType2AttrType

<<map>>
a2a: Attribute2Attribute

<<map>>
c2e: Class2Entity

<<left>>
ca: Attribute

<<right>>
ra: Attribute

<<left>>
cat: UmlClass

<<right>>
rat: UmlClass

<<create>>

<<create>>

<<create>>

<<create>>

node

*
node
*

node

*
node

* node

*

node

*

node

* node
*

<<create>>
<<left>>

1 type

<<create>>
<<right>>

1type

Fig. 7. TGG rule for attribute types in the context of mapped classes and entities.

Once more, mind that the presented TGG rules are not embedded in a control flow
and are thus assumed to operate in parallel. Ambiguities can be circumvented by ensur-
ing the LHS of each rule is logically exclusive with that of the other TGG rules, or re-
solved by offering users the opportunity to order the set of matched rules based on some
predefined characteristics. The latter strategy is supported by Fujaba’s MoTE/MoRTEn
plugins and is implemented by flagging elements as soon as they have participated in
the execution of one TGG rule such that other rules can be disabled for those elements
[11].

Problem Identification The TGG rules presented in the previous section only define
the general consistency constraints that should be maintained across conceptual and ro-
bustness models. They do not take into account that, for example, the types of attributes
can be external datatypes or classes imported from a third party “library” model. More-
over, the semantics of all rules is automatically the same. This implies that, for example,
all inconsistencies are resolved fully automatically in both directions. However, it may
be desirable that some rules interact with developers before modifying any model ele-
ment. Moreover, some inconsistencies should be resolved manually, or they should even
be tolerated. Nuseibeh even argues that each inconsistency must be treated differently
[8]. Without going that far, we acknowledge the need for control flow, user interaction
and inconsistency tolerance.

10

5 A Hybrid Model Transformation Language

This section learns from the problems identified in the declarative and imperative ap-
proaches to derive a hybrid solution that allows one to apply the best features of both
paradigms together.

5.1 Control Flow

A simple extension of the discussed TGG system is the addition of a rule that defines
how external attribute types should be kept consistent. Figure 8 illustrates that such a
rule does not introduce any new concepts as such.

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

<<create>>
<<map>>

at2at: AttrType2AttrType

<<map>>
a2a: Attribute2Attribute

<<left>>
ca: Attribute

<<right>>
ra: Attribute

type: UmlClass

cm: Model rm: Model

<<create>>

<<create>>

<<create>>

<<create>>
<<left>> 1

type

<<create>>
<<right>>

1

type

node

*

node * node
*

node
*

stereotype* stereotype *

<<closure>>
<<negative>>

ownedElement *

<<closure>>
<<negative>>

ownedElement*

node *

Fig. 8. TGG rule for handling external attribute types.

The major challenge however is the integration of the TGG rules shown on Figure 8
and 7.

Controlled Triple Graph Grammars In many cases, part of the control flow can
be pulled out of rules by organizing them in a fine-grained manner [10], with logically
exclusive preconditions. However, since the two rules from Figures 8 and 7 can establish
consistency under overlapping preconditions, requesting information from the modeler
is essential. A branch and TGG rule call is needed to delegate to the appropriate rule.
After identifying the possible cases in which inconsistencies between attribute types can
occur, the following paragraph will focus on the overlapping between the application
conditions of the two TGG rules.

11

Table 1 presents the relevant values of the types of the attributes ca and ra from
the perspective of keeping them consistent. Note that the ∈ relation can be defined as
a transitive traversal of the owner (inverse of or ownedElements) association end from
the UML metamodel.

1 ca=null & ra=null 4 ca∈cm & ra=null 7 ca/∈cm & ra=null
2 ca=null & ra∈rm 5 ca∈cm & ra∈rm 8 ca/∈cm & ra∈rm
3 ca=null & ra/∈rm 6 ca∈cm & ra/∈rm 9 ca/∈cm & ra/∈rm

Table 1. Possible inconsistencies for attribute types.

Both the rule on Figure 8 and that on Figure 7 can create a consistent type for ca (or
ra) if this type is null while the type of the corresponding ra (or ca) exists already. The
TGG rule from Figure 7 thus covers cases 2 and 4 while the rule from Figure 8 covers
cases 3 and 7. The rule from Figure 7 also covers case 5 since it can reconcile existing
types of ca and ra if they are contained in cm and rm respectively. More interestingly,
case 5 does not trigger a match for the rule from Figure 8: it matches only when at
least one of ca’s type or ra’s type exists in an external library. Similarly, the rule from
Figure 8 covers case 9 while this case does not trigger a match of the rule from Figure 7:
the latter is matched only when at least one of ca’s type or ra’s type resides in cm or
rm respectively. If both the type of ca and ra are null (case 1), these types are already
consistent and neither of the TGG rules need to be triggered. The challenging cases from
a model reconciliation viewpoint are the ones where ca has a type in the conceptual
model cm and ra node has an external libray type (case 6), or vice versa (case 8): in
these cases, both the rule from Figure 7 and that from Figure 8 would match. Adding an
additional application condition in both rules is not a feasible solution since input from
the modeler is required to resolve this ambiguity.

Instead, an explicit control flow needs to be specified between the two TGG rules.
More specifcally, before executing the TGG rules, the consistency system needs to look
up what attribute type pairs consist of one internal and one external type. For such pairs,
the system needs to ask the modeler what type gets precendence over the other one.

Figure 9 displays such a control flow specification. In the first state, all pairs of
linked attributes from the conceptual and robustness model are matched. The story dia-
gram modeling the behavior of this state is omitted due to space restrictions but it can
be syntactically compared to that of Figure 4.

The second and third topmost states from Figure 9 test the precondition of this
interactive transformation: does ca have an internal type while ra has an external one
(case 6 from Table 1) or vice versa (case 8)? The second state tests that type of neither ca
nor ra is null since those cases are handled by the conventional, uncontrolled, behavior
of the two TGG rules. The third topmost state tests whether the type of ca is contained
in the conceptual model too while the type of ra is not contained in the robustness model
(case 6) or, vice versa, that the type of ra is contained in the robustness model too while
the type of ca is not contained in the conceptual model (case 8).

12

The fourth topmost state contains a call to request information from the modeler.
Without this human input, the transformation cannot decide whether to change the ex-
ternal type to an internal one or vice versa. The two subsequent states contain a call to
variants of the presented TGG rules. These rules modify the type of ca or ra, which
resolves the inconsistency.

<<code>>
String method= chooseAlternative("Please choose the desired type for the attributes.", new Object[]{"Library type", "Types from CM/RM"});

<<code>>
attributeHasTypeInModelWithStereotype(ca, "Conceptual Model") XOR attributeHasTypeInModelWithStereotype(ra, "Robustness Model")

Match linked attributes
{motmot.constraint=ca!=ra,
motmot.transprimitive=Match linked attributes}

<<code>>
map-externaltypes-controlled-tgg(a1, a2);

<<code>>
map-internaltypes-controlled-tgg(a1, a2);

<<code>>
ca.type!=null && ra.type!=null

Alternatively, one could bypass the need of split up TGG
rules by setting a model property here that will trigger
the LHS of the TGG rules in a subsequent run.

The two aspects of the precondition

Interaction with Modeler

success (true) failure (false)

<<failure>>

<<failure>>

<<failure>>

[method.equals("Library type")] [method.equals("Types from CM/RM")]

<<success>>

<<success>>

<<success>>

Fig. 9. Control flow of the interactive, hybrid, model transformation for reconciling
attribute types in the case of one internal type and one external one.

Calling conventional TGG rules directly is not feasible since they do not operate
within the context of particular model element tuples. Therefore, fully declarative TGG
rules need to be refactored into more operational ones. For example, by transforming
the TGG rule for external attribute types (presented on Figure 8) into a two-state story
diagram σ, the TGG mapping can be executed on the ca and ra attributes that were
already bound in the frist state of the transformation shown on Figure 9. The behavior
of the second state of σ is modeled by the TGG rule on Figure 10. The main difference
with Figure 8 is that the ca and ra nodes are already bound by being passed as function
parameters instead of being matched from the at2at node.

Control flow alternative Instead of mixing Story Diagrams with TGG rules on one
level of abstraction, one could keep the high level TGG rules and the low-level interac-
tion and control flow details stricly separate. This however leads to subtle dependencies
between TGG rules and derived story diagrams. Moreover, since details are added to
the Story Diagrams that are generated from the TGG rules, unexpected behavior can
be introduced at the Story Diagram level. Therefore, convenient navigation should be
provided from TGG rules to the derived Story Diagrams and back. In [17] we proposed
the use of traceability links to manage this complexity.

13

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

<<create>>
<<map>>

at2at: AttrType2AttrType

<<left>>
<<bound>>
ca: Attribute

<<right>>
<<bound>>
ra: Attribute

type: UmlClass

cm: Model rm: Model

<<create>>
<<right>>

1

type
<<create>>
<<left>> 1

type

node

*

node

*

stereotype* stereotype *

<<closure>>
<<negative>>

ownedElement *

<<closure>>
<<negative>>

ownedElement*

node *

Fig. 10. Example of a controlled TGG rule: ca and ra are bound by being passed as
function parameters.

6 Related Work

The emerging QVT standard [9] refers to the combination of its declarative and im-
perative sublanguages as a hybrid transformation language. However, the combination
of these sublanguages has not been demonstrated on an actual transformation prob-
lem yet. The most concrete proposal of integrating declarative language features with
imperative ones to date may have been published by Jouault and Kurtev [6]. Their AT-
LAS Transformation Language (ATL) allows one to map elements in called rules with
the same syntax as that for matched rules. Matched rules can be compared with graph
grammar rules. Called rules make no use at all of a matching engine. Therefore, ATL
could not be employed as the hybrid transformation language introduced in this paper:
in Subsection 5.1 we analyzed under what condition two declarative rules would result
in an ambiguity and resolved it by defining an imperative rule with higher precedence.
This imperative rule used input from the modeler (which would also be supported by
ATL’s native called rules) to delegate to the proper declarative rule (which would also
be supported by ATL). ATL’s limitation is that the imperative rule cannot be sched-
uled between (or in this case: before) declarative rules. It should also be noted that
the main declarative power of TGG rules is that they support bidirectional consistency
maintenance with very low specification effort. Future versions of declarative ATL may
benefit from an evolution compared with that from pair graph grammars to triple graph
grammars, as discussed in Subsection 3.3.

7 Summary and Outlook

This paper aimed to model a complex transformation problem in an intuitive manner.
The complexity of the case study consisted of the variety of ways the overall consis-

14

tency of two models could be violated and the need for developer interaction in the con-
flict resolution process. After illustrating that neither a purely imperative, nor a purely
declarative approach was sufficient to solve this case study in a desirable manner, the
integration of two formalisms was used as the first concrete application of a hybrid
transformation language.

The advantage of the declarative features of Triple Graph Grammars are that incre-
mental and bidirectional transformations can be specified concisely. On the other hand,
adding imperative features such as method definition and calling, sequential composi-
tion, branching and looping was required for incorporating some human intelligence
into the system.

In our current work, we are comparing the “merged language” approach presented
in this paper with the use of the “two-level language architecture” presented in [17].
These alternative approaches for reconciling cociseness with completeness are dis-
cussed with the main international TGG tool developers and may be supported by a
future version of Fujaba [16] or MoTMoT [7].

Language Integration By Metamodel Merging The advantage of the approach pre-
sented in this paper is that the semantics of a TGG rule is defined unambiguously.
A potential disadvantage is that some TGG rules become slightly more difficult
to reason about. Moreover, a merged language may suffer from compromises that
need to be made for satisfying the expectations of developers familiar with the
original languages. In the case of the proposed Controlled TGG language, we pre-
served the mapping of a TGG rule to its six operational rules. However, some of
these cases could never be triggered in the given example. This is a possible source
of confusion and runtime performance problems (due to redundant matching).

Language Integration By Metamodel Mapping The advantage of the approach from
[17] is that TGG rules remain simple by handling ambiguities only at the level of
the derived operational rules. The disadvantage from [17] is that without a proper
traceability tool, it is hard to understand the complete semantics of a set of TGG
rules. It should be noted that the emerging QVT standard [9] proposes a two-level
transformation language architecture as well which makes [17] applicable in that
context too.

Conclusion

This paper demonstrated the feasability of merging a declarative model transformation
language with an imperative one. By combining the advantages of Triple Graph Gram-
mars with those of Story Diagrams, compactness was reconciled with expressiveness.
This experiment raised an interesting research question for the language engineering
community: what are, in the context of language integration, the advantages of meta-
model merging over metamodel mapping and vice versa? Although a preliminary com-
parison could be given, more research in this direction should be conducted for enabling
a more mature tradeoff analysis.

15

References
1. A. v. Lamsweerde and R. Darimont and P. Massonet. The Meeting Scheduler System -

Problem Statement. Technical report, Université Catholique de Louvain - Département
d’Ingénierie Informatique, B-1348 Louvain-la-Neuve (Belgium), 1992.

2. Albert Zündorf. Rigorous Object Oriented Software Development. PhD thesis, University of
Paderborn, 2001.

3. Robert Balzer. Tolerating inconsistency. In ICSE ’91: Proceedings of the 13th international
conference on Software engineering, pages 158–165, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

4. S. Becker, T. Haase, and B. Westfechtel. Model-based a-posteriori integration of engineering
tools for incremental development processes. Journal of Software and Systems Modeling,
4:123–140, 2004.

5. Stephen Cranefield and Jin Pan. Bridging the gap between the model-driven architecture
and ontology engineering. Technical Report 2005/12, Department of Information Science,
University of Otago, Dunedin, New Zealand, November 2005.

6. Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel Bruel,
editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of Lecture Notes in
Computer Science, pages 128–138. Springer, Jan 2006.

7. Olaf Muliawan, Hans Schippers, and Pieter Van Gorp. Model driven, Template based, Model
Transformer (MoTMoT). http://motmot.sourceforge.net/, 2006.

8. Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging inconsistency in
software development. Computer, 33(4):pp. 24–29, 2000.

9. Object Management Group. MOF QVT Final Adopted Specification – ptc/05-11-01, 2005.
http://www.omg.org/docs/ptc/05-11-01.pdf.

10. Pieter Van Gorp, Frank Altheide, and Dirk Janssens. Traceability and Fine-Grained Con-
straints in Interactive Inconsistency Management. In Tor Neple, Jon Oldevik, and Jan
Aagedal, editors, Second ECMDA Traceability Workshop, 10 July 2006.

11. Robert Wagner. Consistency Management System for the Fujaba Tool Suite – MoTE/-
MoRTEn Plugins. https://dsd-serv.uni-paderborn.de/projects/cms/, 1 August 2006.

12. Doug Rosenberg and Kendall Scott. Use case driven object modeling with UML: a practical
approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

13. Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML profiles to generate
plugins from visual model transformations. Electronic Notes in Theoretical Computer Sci-
ence, 127(3):5–16, 2004. Software Evolution through Transformations (SETra). Satellite of
the 2nd Intl. Conference on Graph Transformation.

14. Andy Schürr. Progres: A visual language and environment for programming with graph
rewrite systems. Technical Report AIB 94-11, RWTH Aachen, Fachgruppe Informatik, 1994.

15. Andy Schürr. Specification of graph translators with triple graph grammars. In Proceedings
20th Workshop on Graph-Theoretic Concepts in Computer Science WG 1994, volume 903
of Lecture Notes in Computer Science, pages 151–163. Springer, 1995.

16. Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert Wagner,
Lothar Wendehals, and Albert Zündorf. Tool integration at the meta-model level: the Fujaba
approach. International Journal on STTT, 6(3):203–218, August 2004.

17. Pieter Van Gorp, Frank Altheide, and Dirk Janssens. Towards 2D Traceability in a Platform
for Contract Aware Visual Transformations with Tolerated Inconsistencies. In Enterprise
Distributed Object Computing Conference (EDOC), Hong Kong, 16 October 2006. IEEE.

18. Pieter Van Gorp, Hans Schippers, and Dirk Janssens. Copying Subgraphs within Model
Repositories. In Roberto Bruni and Dániel Varró, editors, Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques, Electronic Notes in Theoretical
Computer Science, pages 127–139, Vienna, Austria, 1 April 2006. Elsevier.

16

-RXIKVEXMRK�E�
(IGPEVEXMZI�[MXL�ER�
-QTIVEXMZI�
1SHIP�8VERWJSVQEXMSR�
0ERKYEKI

4MIXIV�:ER�+SVT��3PEJ�1YPME[ER��
(MVO�.ERWWIRW�

7ITXIQFIV������
8IGLRMGEP�6ITSVX���������

9RMZIVWMX]�SJ�%RX[IVT
(ITEVXQIRX�SJ�1EXLIQEXMGW�
�'SQTYXIV�
7GMIRGI

(MZMWMSR�SJ�'SQTYXIV�7GMIRGI

1MHHIPLIMQPEER����
�����%RX[IVTIR��&IPKMYQ

Integrating a Declarative with an Imperative Model
Transformation Language

Pieter Van Gorp, Olaf Muliawan, Dirk Janssens

Department of Mathematics and Computer Science
University of Antwerp

{pieter.vangorp,olaf.muliawan,dirk.janssens}@ua.ac.be

Abstract. By using a small, yet complex, case study as a model transformation
language benchmark, advantages and limitations of several language paradigms
can be identified. On the one hand, declarative languages only support the spec-
ification of constraints that need to be maintained by a transformation. This lim-
itation enables engines to apply default transformation strategies for handling
common cases of constraint violation. On the other hand, imperative languages
support the explicit specification of model updates. This additional expressive-
ness comes at the cost of more verbose specifications. Therefore, this paper pro-
poses a new, hybrid, transformation language that combines the advantages of
two legacy languages from these two categories.

1 Introduction

In this paper, we use Model Driven Architecture (MDA) technologies such as Unified
Modeling Language (UML) profiles, the Meta-Object Facility (MOF) and the Object
Constraint Language (OCL) for improving the language support for the development
of model transformations. More specifically, we present the use of a new, hybrid, trans-
formation language in the context of a small case study. By limiting the size of the case
study, we are able to focus on the issues that challenge today’s state-of-the-art trans-
formation tools. One particular challenge that challenges today’s graph rewriting tools
is developer interaction: tools supporting declarative languages such as Triple Graph
Grammars (TGGs [15]) are usually limited to batch-transformations or only support a
fixed interaction pattern [4]. Tools supporting imperative transformation languages such
as Story Diagrams [2] can be used for implementing any kind of interaction scenario
but the transformation models tend to be rather low-level [10].

This paper is organized as follows: Section 2 introduces the exemplary models that
are used as a guideline throughout this paper, Section 3 explains why model manage-
ment is a graph transformation problem and introduces the reader to the various trans-
formation styles from this field. Section 4 presents an imperative and a declarative graph
transformation solution to the presented case study. Based on the problems identified in
the previous Section, Section 5 covers the main contribution of this paper by introduc-
ing a concrete application of a new, hybrid, transformation language. After pointing to
related work in Section 6 and summarizing the lessons learned in Section 7, the paper
concludes.

2 Case Study: Conceptual and Robustness Models

In order to compare various model transformation approaches, an established case study
based on the requirements of a Meeting Scheduler system is used throughout our work.
The case study was proposed by Van Lamsweerde et al. [1] as a benchmark for require-
ments elicitation and software specification techniques. The problem statement of the
benchmark was published deliberately imprecise and incomplete.

The requirements specification distinguishes between different conflict types and
describes ways of resolving them. Subsection 2.1 presents a conceptual model that for-
malizes the concepts, the associations and their multiplicities from the problem domain.
Subsection 2.2 presents a robustness model for the “confirm meeting” use case sce-
nario. The fragments in this paper should merely illustrate some realistic dependencies
between models in different languages and should not be regarded as a complete or
stable specification of a meeting scheduler.

2.1 Conceptual Model

Figure 1 shows a conceptual model (CM) of a Meeting Scheduler application, specified
in UML syntax. At the conceptual level, analysts are free to use constructs such as asso-
ciation classes, views, and other language features. Such features may not be supported
directly by the implementation language but they allow one to represent the problem
domain in a way as close as possible to one’s perception of reality.

Fig. 1. Conceptual Model of a Meeting Scheduler application.

A complete conceptual model contains all relevant nouns and verbs from a problem
domain as classes and operations.

2.2 Robustness Model

The model-view-controller (MVC) pattern has been found beneficial for system evolv-
ability. Therefore, Rosenberg and Scott propose to move from analysis to design by
creating robustness models [12]. User interface screens are represented by boundary
objects (or interfaces), persistent classes from the conceptual model are represented by

2

entities while application behavior is encapsulated by control objects (or services). A
set of architectural rules (like “only services are allowed to access entities”) assists de-
velopers to create an evolvable design that is robust by localizing changes. Figure 2
shows a robustness model (RM [12]) of the application under study. Note that the entity
Schedule corresponds to the class Schedule from Figure 1.

Fig. 2. Robustness Model of a Meeting Scheduler application.

The model describes the way a meeting can be confirmed by an initiator. After log-
ging in, the initiator is directed to the main user interface screen of the application.
There, he can select a particular meeting and click the “confirm meeting” button. This
action triggers an update of the meeting status and a booking of the meeting location.
Finally, the success of the use case is confirmed by sending a mail to all meeting atten-
dees.

2.3 Consistency Constraint

An interesting consistency constraint between conceptual and robustness models is that
all classes from the conceptual model should correspond to entities in the robustness
model. These classes should “roughly” have the same attributes. Types of corresponding
attributes can be contained in the conceptual and robustness model respectively or they
can be imported from an external “library” model (or package).

3 Consistency Maintenance based on Graph Transformation

This paper makes extensive use of graph transformation. Therefore, this section intro-
duces the reader to the basics and different flavors of graph transformation that are of
interest to a model-driven software engineer.

3.1 Model Transformation as Graph Transformation

The data definition languages (like OMG’s MOF and Eclipse’s ECORE) for modern
model repositories (like NetBeans’s MDR and Eclipse’s EMF) are object-oriented. Con-

3

sequently, model repositories can be perceived as object-oriented databases. The data
instances in a repository can be perceived as graphs with objects taking the role of at-
tributed nodes. Association, containment, inheritance and other relationships take the
role of edges. Transforming data in repositories can thus be perceived as a graph trans-
formation activity. The relation between the contents of a repository and a graph are
discussed more concretely in the context of Figure 6 from [5] or Figure 3 from [18].

A basic graph transformation system is defined with a set of graph production rules,
where a production rule consists of a left-hand side (LHS) graph and a right-hand side
(RHS) graph. Such rules are the graph equivalent of term rewriting rules, i.e., intuitively,
if the LHS graph is matched in the host graph, it is replaced by the RHS graph.

3.2 Imperative Transformations: Controlled Graph Transformation

In controlled graph rewriting, rules can be embedded in a control flow consisting of
conditionals and loops. Controlled graph transformation rules correspond to methods
that contain a state-based control flow and that are able to call each other while passing
nodes as parameters.

Throughout this paper, the UML profile for Story Diagrams [13] is used. The Story
Diagram language consists of a UML based syntax with the semantics of controlled
graph rewriting. Graph schemata are encoded as UML class diagrams. Primitive graph
rewriting rules (called story patterns) are encoded in UML’s class diagram syntax. A
class represents a node to be matched (or object template in QVT terminology [9]) while
an association represents an edge to be matched. A colon in the class name allows one
to separate the name of a node from the type to be matched.

While in PROGRES [14], a language that historically precedes Story Diagrams, the
LHS and RHS are shown in distinct parts of a rewrite rule, a story pattern shows all ele-
ments in one compound figure. As an advantage, elements occuring in both the LHS and
RHS have to be displayed only once. Nodes and edges marked with the� destroy �
stereotype appear only on the left-hand side of the corresponding graph transformation.
Such elements are deleted. The stereotype� create � marks elements only used on
the right-handside. Such elements are created.

The control flow that embeds the story patterns is encoded in UML’s activity di-
agram syntax. In controlled graph rewriting, bound nodes are nodes that are already
known to the system either from previous matchings or because they are passed as
parameters to the transformation rule. Thus, a bound node does not trigger the compu-
tation of a new match but it reuses its old match.

3.3 Declarative Transformations: Graph Grammars

A graph grammar is defined as a set of rules that are executed in parallel until a fixed
point is reached. Graph grammars are a declarative formalism since they do not specify
a state-based modification of one graph into another one. Therefore, one graph grammar
can be used:

– not only for generating one graph from another one,
– but also for checking if an existing graph is consistent with another one.

4

Pair Graph Grammars were introduced in the early seventies to specify graph-to-graph
translations. A pair grammar thus consists of rules which modify two participating
graphs. Triple Graph Grammars (TGGs) were introduced in the early nineties as a for-
malism for maintaining bidirectional consistency constraints between models originat-
ing from different software engineering tools [15].

Although TGG rules can be executed directly by a Java interpreter, their opera-
tional semantics is usually clarified by presenting the mapping of a TGG rule to conven-
tional rewrite rules. Burmester et al., for instance, map TGG rules to six primitive graph
rewriting rules [16]: three rules for adapting changes to the source model and three for
adapting changes to the the target model. To indicate the direction of the change prop-
agation, the former three are called the left-to-right or “forward” rules while the latter
are called right-to-left or “backward”. Both groups of rules consist of a creation rule,
a deletion rule and a consistency rule. The former makes sure that when an element is
found in one model, a corresponding element exists in the other model. The second rule
makes sure that when an element is deleted from one model, its corresponding element
is deleted from the other model. The latter rule makes sure that when attribute updates
on an element in one model trigger a violation of a consistency constraint related to an
element in the other model, that the element in the other model is updated. In fact, an
additional rule is needed to create traceability links between model elements that are
consistent with one another but were not mapped to one another yet [15].

4 Balancing between Declarative and Imperative

The case study, briefly presented in section 2, challenged our use of OCL and Story Di-
agrams in that bidirectional consistency constraints could not be modeled concisely. A
bidirectional consistency constraint can be maintained by a pair of Story Diagram trans-
formations but this is undesirable due to the verbose specification style. The case study
also challenged the triple graph grammar formalism on various aspects. For example,
the implementation of a transformation that supported a realistic developer interaction
process required us to add control structures between TGG rules (or implement them
on a lower level of abstraction [17]).

4.1 Story Diagrams with OCL: too low-level

This subsection illustrates how Story Diagrams and OCL can be used for the implemen-
tation of a transformation that maintains the consistency constraint that was introduced
informally in Subsection 2.3. Although a set of fine-grained rules with clear pre- and
postconditions can properly establish the constraint in a large number of violation sce-
nario’s, such a set easily becomes hard to maintain for transformation writers.

Application to Case Study As a first example of a consistency constraint, consider the
OCL helper operation eachClassTracesToAnEntity. It tests whether each class from the
conceptual model traces to an entity in the robustness model:

5

89 -- Evaluate whether each class in the conceptual model traces to
90 -- an entity in the robustness model
91 let eachClassTracesToAnEntity(): Boolean=
92 conceptualmodelTracesToRobustnessmodel() and -- ’rm’ not Undefined
93 allClassesFromModel(cm)->forAll(cmc|
94 allClassesFromModel(rm)->exists(rmc|
95 this.traceabilityLinks->select(oclIsKindOf(Class2Entity))->exists(l|
96 l.node->contains(cmc) and
97 l.node->contains(rmc)
98)
99)

100)

A transformation system should search for all classes unrelated to an entity and
either generate the entity automatically or allow the user to link the class to an existing
entity manually. Figure 3 shows how a Story Diagram can model the behavior for the
second case.

<<code>>
setFocus("Associate with an entity", new Object[] {classInCM});

Is the Class related to an Entity?
{motmot.transprimitive=Is the Class related to an Entity?}

lookupStereotypes
{motmot.transprimitive=lookupStereotypes}

<<loop>>
For all classes in the CM

{motmot.transprimitive=For all classes}

true

[not eachClassTracesToAnEntity()]

<<success>>

<<each time>>

<<failure>>

[eachClassTracesToAnEntity()]

Fig. 3. Story Diagram for a transformation that establishes the eachClassTracesToA-
nEntity constraint on existing models.

The transformation iteratively looks for violating classes in the conceptual model
by iterating (due to the� loop � stereotype) over all classes in the conceptual model.
For every (due to the � each time � stereotype) match, the transformation checks
whether the matched class is related to an entity. If the latter “Is the Class related to
an Entity?” pattern doesn’t match, the transformation has found a violating class: the
transition with the� failure � stereotype is triggered and the code state containing
a setFocus call highlights this problem such that the developer can solve it manually.
The setFocus method is part of the ICONS framework and allows the transformation
writers to interact with the modeler. More specifically, the method presents a dialog
with the first parameter as a message to the modeler. The second parameter is an array
of model elements that should provide the modeler some context for assessing and
solving the problem. If the “Is the Class related to an Entity?” pattern does match,
the transition with the � success � stereotype is triggered and the transformation

6

continues with the next class in the conceptual model. After visiting all such classes,
the transformation returns true if it has established its postcondition, which corresponds
to the eachClassTracesToAnEntity constraint, or resumes the iteration over violating
classes.

wodnApplication : UmlPackage
{motmot.constraint=name.equals(this.getApplicationName())}

<<bound>>
stereotypeOnRM: Stereotype

<<bound>>
entityStereotype: Stereotype

<<bound>>
applicationModel : Model

<<bound>>
classInCM : UmlClass

entityInRM: UmlClass

c2e: Class2Entity

rm: Model

en: Nodecn: Node
stereotype

*

stereotype

*

ownedElement*content 1

ownedElement*

content1

<<closure>>
ownedElement *

node* node*

Fig. 4. Story pattern modeling the transformation behavior in state “Is the Class related
to an Entity?”.

Figure 4 shows how the behavior of the second state can be modeled as a primitive
graph rewrite rule (or story pattern). The pattern can be read as starting from the bound
applicationModel node. It searches for the package wodnApplication containing the
robustness model rm. The rm node should be connected to a stereotype that has been
bound in the first state of the transformation. The c2e node represents a traceability link
between an entity in rm and the class that was bound in the� loop� state called “For
all classes in the CM”. Figure 5 from [18] models the transformation that generates an
entity in an empty robustness model from a class in an existing conceptual model.

As a second sample consistency constraint, consider classEntity_name_match. This
OCL helper operation checks for all elements satisfying eachClassTracesToAnEntity
whether the names of a class and its related entity correspond.

102 -- Evaluate whether the classifiers (including entities) of all nodes related by
103 -- a Class2Entity link have the same name
104 let classEntity_name_match(): Boolean=
105 traceabilityLinks->select(oclIsKindOf(Class2Entity))->forAll(l|
106 -- for all relevant links:
107 l.ignoreConstraints or -- user has marked that the name can be ignored, or
108 l.node->forAll(n1,n2| -- for any couple of nodes,
109 -- their content elements should have the same name
110 n1.content.name=n2.content.name
111)
112)

Note that this constraint implements the fundamental concept of “tolerated incon-
sistencies” as described by Balzer [3]. More specifically, on line 107 it specifies that

7

no further checking is required if the user has set the ignoreConstraints property of the
Class2Entity link to true. Figure 5 shows how the ignoreConstraints property is defined
on the Link metaclass. By exposing this property to developers, a consistency mainte-
nance system allows them to postpone the resolution of particular inconsistencies. To
this extent, we are developing a MagicDraw plugin that can highlight model elements
on demand and that provides query and update facilities based on the ignoreConstraints
property [10].

The Link and Node metaclasses are part of a metamodel for traceability. Link’s four
subclasses are part of a transformation model that extends the traceability metamodel.
As illustrated by the above OCL constraints, these subclasses provide a context for
constraints that are specific to relationships between metaclasses of the languages of
the transformed models.

CMconsistentRM
{javax.jmi.substituteName=C Mconsistent R M}

applicationName : String

fix_eachClassTracesToAnEntity_violated_rmExists() : Boolean
...

Link

ignoreConstraints : Boolean = false

Attribute2AttributeClass2Enttiy

Node

role : String

CM2RM CP2RP

Model

LinksOfCMconsistentRM

transformation

*

traceabilityLinks

*

NodesOfLinklink

1

node

*

UMLmodelOfTransformation
transformation*

applicationModel1

Fig. 5. MOF instance defining the structure of the CMconsistentRM transformation and
its traceability links.

Problem Identification From fix_ClassEntity_name_match_violated one expects that
it searches for all classes linked to an entity with a different name. For these conflicting
pairs, a transformation can:

– update the name of the class automatically, or
– update the name of the entity automatically, or
– ask the user the give his explicit permission to ignore the inconsistency, or
– ask the user to change the names of class and/or entity manually.

Moreover, next to a change of name, the related class can be deleted, etc. Because
these violations can occur for all metaclasses that are constrained in two directions,
they should not be modeled explicitly by the transformation writer but should be part of
the transformation modeling language. In the next subsection, consider a formalism that
provides default reactive behavior to a lot of bidirectional contraint violation scenario’s.

4.2 Triple Graph Grammars: too generic

Triple Graph Grammars are a natural alternative for Story Diagrams when bidirectional
constraints need to be maintained. This subsection illustrates how the constraint defined
on conceptual and robustness models can be maintained by a set of TGG rules. We
will then identify where the TGG formalism needs to be extended or complemented to
complete the case study in a satisfactory manner.

8

Application to Example The rule on Figure 6 specifies that at all times, classes
contained in a package from the robustness model should be mapped to classes with
the same name in a corresponding package in the robustness model. Additionally, the
classes in the robustness model should be decorated with the� entity � stereotype.

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

{motmot.constraint=name.equals("Entity")}
entityStereotype : Stereotype

<<bound>>
this: CMconsistentRM

<<create>>
<<right>>

entityInRM: UmlClass

<<create>>
<<left>>

classInCM: UmlClass <<create>>
<<map>>

c2e: Class2Entity

<<left>>
cp: UmlPackage <<right>>

rp: UmlPackage
<<map>>
p2p: CP2RP

cm: Model rm: Model

{classInCM.name=entityInRM.name}

<<create>>

<<create>>

<<create>>

node

*

node
*

node

*

<<create>>
<<right>>

stereotype *

node

*

<<create>>
<<left>>

ownedElement*

<<create>>
<<right>>

ownedElement*

stereotype

*

stereotype

*

ownedElement*ownedElement*

traceabilityLinks

*

traceabilityLinks *

Fig. 6. TGG rule for classes and entities.

Note that in contrast to the rewrite rules from the previous subsection, the rule from
Figure 6 is not embedded in a control flow. The only bound node is a this reference to
the CMconsistentRM class. From this context, all other nodes are matched.

The nodes and edges that are decorated with the� create� stereotype are part of
the RHS of the TGG rule. TGG nodes can be devided in four groups, based on whether
they carry one of the� left�,� map� or� right� stereotypes. Elements that
do not carry any of the three stereotypes are part of the overall host graph. Elements
carrying the � left �or � right � stereotypes are part of subgraphs representing
the two models that need to be kept consistent. Elements carrying the � map �
stereotype are part of the interconnection (sub)graph (or “traceability model”). They
are displayed with a hexagon symbol.

As an illustration that the semantics of a TGG rule is more declarative than a con-
ventional rewrite rule, consider the semantics of Figure 6. With conventional rewrite
semantics (or without taking the � left �, � map � and � right � stereo-
types into account), three new nodes would be created after finding the match described
above. No more checking would be performed afterwards. With TGG semantics how-
ever, the rule will create a consistent entityInRM node when only the classInCM node
is available. Vice versa: a new classInCM node node can be created from an existing
entityInRM node. When both the classInCM and entityInRM nodes exist, but they are
in conflict, the TGG rule will use the path over the c2e node to navigate between con-
flicting nodes in order to make them consistent again. This can involve changing the
name of the classInCM or entityInRM node or changing the set of stereotypes attached
to these nodes. Finally, when a pair of consistent classInCM and entityInRM nodes exist
without a path over c2e connecting them, the TGG rule will create such a path.

9

The second and final conventional TGG rule presented here ensures that the types of
corresponding attributes are consistent. The rule illustrates the issue of tracking the cre-
ation of edges. Since the underlying graph formalism does not support edges pointing
to edges, the at2at node points to the (ca,cat) and (ra,rat) nodes respectively instead of
pointing to the RHS edge between these nodes. Note that the management of the Link
classes by the CMconsistentRM class is implemented in another view that is left out
due to space considerations.

<<create>>
<<map>>

at2at: AttrType2AttrType

<<map>>
a2a: Attribute2Attribute

<<map>>
c2e: Class2Entity

<<left>>
ca: Attribute

<<right>>
ra: Attribute

<<left>>
cat: UmlClass

<<right>>
rat: UmlClass

<<create>>

<<create>>

<<create>>

<<create>>

node

*
node
*

node

*
node

* node

*

node

*

node

* node
*

<<create>>
<<left>>

1 type

<<create>>
<<right>>

1type

Fig. 7. TGG rule for attribute types in the context of mapped classes and entities.

Once more, mind that the presented TGG rules are not embedded in a control flow
and are thus assumed to operate in parallel. Ambiguities can be circumvented by ensur-
ing the LHS of each rule is logically exclusive with that of the other TGG rules, or re-
solved by offering users the opportunity to order the set of matched rules based on some
predefined characteristics. The latter strategy is supported by Fujaba’s MoTE/MoRTEn
plugins and is implemented by flagging elements as soon as they have participated in
the execution of one TGG rule such that other rules can be disabled for those elements
[11].

Problem Identification The TGG rules presented in the previous section only define
the general consistency constraints that should be maintained across conceptual and ro-
bustness models. They do not take into account that, for example, the types of attributes
can be external datatypes or classes imported from a third party “library” model. More-
over, the semantics of all rules is automatically the same. This implies that, for example,
all inconsistencies are resolved fully automatically in both directions. However, it may
be desirable that some rules interact with developers before modifying any model ele-
ment. Moreover, some inconsistencies should be resolved manually, or they should even
be tolerated. Nuseibeh even argues that each inconsistency must be treated differently
[8]. Without going that far, we acknowledge the need for control flow, user interaction
and inconsistency tolerance.

10

5 A Hybrid Model Transformation Language

This section learns from the problems identified in the declarative and imperative ap-
proaches to derive a hybrid solution that allows one to apply the best features of both
paradigms together.

5.1 Control Flow

A simple extension of the discussed TGG system is the addition of a rule that defines
how external attribute types should be kept consistent. Figure 8 illustrates that such a
rule does not introduce any new concepts as such.

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

<<create>>
<<map>>

at2at: AttrType2AttrType

<<map>>
a2a: Attribute2Attribute

<<left>>
ca: Attribute

<<right>>
ra: Attribute

type: UmlClass

cm: Model rm: Model

<<create>>

<<create>>

<<create>>

<<create>>
<<left>> 1

type

<<create>>
<<right>>

1

type

node

*

node * node
*

node
*

stereotype* stereotype *

<<closure>>
<<negative>>

ownedElement *

<<closure>>
<<negative>>

ownedElement*

node *

Fig. 8. TGG rule for handling external attribute types.

The major challenge however is the integration of the TGG rules shown on Figure 8
and 7.

Controlled Triple Graph Grammars In many cases, part of the control flow can
be pulled out of rules by organizing them in a fine-grained manner [10], with logically
exclusive preconditions. However, since the two rules from Figures 8 and 7 can establish
consistency under overlapping preconditions, requesting information from the modeler
is essential. A branch and TGG rule call is needed to delegate to the appropriate rule.
After identifying the possible cases in which inconsistencies between attribute types can
occur, the following paragraph will focus on the overlapping between the application
conditions of the two TGG rules.

11

Table 1 presents the relevant values of the types of the attributes ca and ra from
the perspective of keeping them consistent. Note that the ∈ relation can be defined as
a transitive traversal of the owner (inverse of or ownedElements) association end from
the UML metamodel.

1 ca=null & ra=null 4 ca∈cm & ra=null 7 ca/∈cm & ra=null
2 ca=null & ra∈rm 5 ca∈cm & ra∈rm 8 ca/∈cm & ra∈rm
3 ca=null & ra/∈rm 6 ca∈cm & ra/∈rm 9 ca/∈cm & ra/∈rm

Table 1. Possible inconsistencies for attribute types.

Both the rule on Figure 8 and that on Figure 7 can create a consistent type for ca (or
ra) if this type is null while the type of the corresponding ra (or ca) exists already. The
TGG rule from Figure 7 thus covers cases 2 and 4 while the rule from Figure 8 covers
cases 3 and 7. The rule from Figure 7 also covers case 5 since it can reconcile existing
types of ca and ra if they are contained in cm and rm respectively. More interestingly,
case 5 does not trigger a match for the rule from Figure 8: it matches only when at
least one of ca’s type or ra’s type exists in an external library. Similarly, the rule from
Figure 8 covers case 9 while this case does not trigger a match of the rule from Figure 7:
the latter is matched only when at least one of ca’s type or ra’s type resides in cm or
rm respectively. If both the type of ca and ra are null (case 1), these types are already
consistent and neither of the TGG rules need to be triggered. The challenging cases from
a model reconciliation viewpoint are the ones where ca has a type in the conceptual
model cm and ra node has an external libray type (case 6), or vice versa (case 8): in
these cases, both the rule from Figure 7 and that from Figure 8 would match. Adding an
additional application condition in both rules is not a feasible solution since input from
the modeler is required to resolve this ambiguity.

Instead, an explicit control flow needs to be specified between the two TGG rules.
More specifcally, before executing the TGG rules, the consistency system needs to look
up what attribute type pairs consist of one internal and one external type. For such pairs,
the system needs to ask the modeler what type gets precendence over the other one.

Figure 9 displays such a control flow specification. In the first state, all pairs of
linked attributes from the conceptual and robustness model are matched. The story dia-
gram modeling the behavior of this state is omitted due to space restrictions but it can
be syntactically compared to that of Figure 4.

The second and third topmost states from Figure 9 test the precondition of this
interactive transformation: does ca have an internal type while ra has an external one
(case 6 from Table 1) or vice versa (case 8)? The second state tests that type of neither ca
nor ra is null since those cases are handled by the conventional, uncontrolled, behavior
of the two TGG rules. The third topmost state tests whether the type of ca is contained
in the conceptual model too while the type of ra is not contained in the robustness model
(case 6) or, vice versa, that the type of ra is contained in the robustness model too while
the type of ca is not contained in the conceptual model (case 8).

12

The fourth topmost state contains a call to request information from the modeler.
Without this human input, the transformation cannot decide whether to change the ex-
ternal type to an internal one or vice versa. The two subsequent states contain a call to
variants of the presented TGG rules. These rules modify the type of ca or ra, which
resolves the inconsistency.

<<code>>
String method= chooseAlternative("Please choose the desired type for the attributes.", new Object[]{"Library type", "Types from CM/RM"});

<<code>>
attributeHasTypeInModelWithStereotype(ca, "Conceptual Model") XOR attributeHasTypeInModelWithStereotype(ra, "Robustness Model")

Match linked attributes
{motmot.constraint=ca!=ra,
motmot.transprimitive=Match linked attributes}

<<code>>
map-externaltypes-controlled-tgg(a1, a2);

<<code>>
map-internaltypes-controlled-tgg(a1, a2);

<<code>>
ca.type!=null && ra.type!=null

Alternatively, one could bypass the need of split up TGG
rules by setting a model property here that will trigger
the LHS of the TGG rules in a subsequent run.

The two aspects of the precondition

Interaction with Modeler

success (true) failure (false)

<<failure>>

<<failure>>

<<failure>>

[method.equals("Library type")] [method.equals("Types from CM/RM")]

<<success>>

<<success>>

<<success>>

Fig. 9. Control flow of the interactive, hybrid, model transformation for reconciling
attribute types in the case of one internal type and one external one.

Calling conventional TGG rules directly is not feasible since they do not operate
within the context of particular model element tuples. Therefore, fully declarative TGG
rules need to be refactored into more operational ones. For example, by transforming
the TGG rule for external attribute types (presented on Figure 8) into a two-state story
diagram σ, the TGG mapping can be executed on the ca and ra attributes that were
already bound in the frist state of the transformation shown on Figure 9. The behavior
of the second state of σ is modeled by the TGG rule on Figure 10. The main difference
with Figure 8 is that the ca and ra nodes are already bound by being passed as function
parameters instead of being matched from the at2at node.

Control flow alternative Instead of mixing Story Diagrams with TGG rules on one
level of abstraction, one could keep the high level TGG rules and the low-level interac-
tion and control flow details stricly separate. This however leads to subtle dependencies
between TGG rules and derived story diagrams. Moreover, since details are added to
the Story Diagrams that are generated from the TGG rules, unexpected behavior can
be introduced at the Story Diagram level. Therefore, convenient navigation should be
provided from TGG rules to the derived Story Diagrams and back. In [17] we proposed
the use of traceability links to manage this complexity.

13

stereotypeOnRM: Stereotype
{motmot.constraint=name.equals("Robustness Model")}{motmot.constraint=name.equals("Conceptual Model")}

stereotypeOnCM : Stereotype

<<create>>
<<map>>

at2at: AttrType2AttrType

<<left>>
<<bound>>
ca: Attribute

<<right>>
<<bound>>
ra: Attribute

type: UmlClass

cm: Model rm: Model

<<create>>
<<right>>

1

type
<<create>>
<<left>> 1

type

node

*

node

*

stereotype* stereotype *

<<closure>>
<<negative>>

ownedElement *

<<closure>>
<<negative>>

ownedElement*

node *

Fig. 10. Example of a controlled TGG rule: ca and ra are bound by being passed as
function parameters.

6 Related Work

The emerging QVT standard [9] refers to the combination of its declarative and im-
perative sublanguages as a hybrid transformation language. However, the combination
of these sublanguages has not been demonstrated on an actual transformation prob-
lem yet. The most concrete proposal of integrating declarative language features with
imperative ones to date may have been published by Jouault and Kurtev [6]. Their AT-
LAS Transformation Language (ATL) allows one to map elements in called rules with
the same syntax as that for matched rules. Matched rules can be compared with graph
grammar rules. Called rules make no use at all of a matching engine. Therefore, ATL
could not be employed as the hybrid transformation language introduced in this paper:
in Subsection 5.1 we analyzed under what condition two declarative rules would result
in an ambiguity and resolved it by defining an imperative rule with higher precedence.
This imperative rule used input from the modeler (which would also be supported by
ATL’s native called rules) to delegate to the proper declarative rule (which would also
be supported by ATL). ATL’s limitation is that the imperative rule cannot be sched-
uled between (or in this case: before) declarative rules. It should also be noted that
the main declarative power of TGG rules is that they support bidirectional consistency
maintenance with very low specification effort. Future versions of declarative ATL may
benefit from an evolution compared with that from pair graph grammars to triple graph
grammars, as discussed in Subsection 3.3.

7 Summary and Outlook

This paper aimed to model a complex transformation problem in an intuitive manner.
The complexity of the case study consisted of the variety of ways the overall consis-

14

tency of two models could be violated and the need for developer interaction in the con-
flict resolution process. After illustrating that neither a purely imperative, nor a purely
declarative approach was sufficient to solve this case study in a desirable manner, the
integration of two formalisms was used as the first concrete application of a hybrid
transformation language.

The advantage of the declarative features of Triple Graph Grammars are that incre-
mental and bidirectional transformations can be specified concisely. On the other hand,
adding imperative features such as method definition and calling, sequential composi-
tion, branching and looping was required for incorporating some human intelligence
into the system.

In our current work, we are comparing the “merged language” approach presented
in this paper with the use of the “two-level language architecture” presented in [17].
These alternative approaches for reconciling cociseness with completeness are dis-
cussed with the main international TGG tool developers and may be supported by a
future version of Fujaba [16] or MoTMoT [7].

Language Integration By Metamodel Merging The advantage of the approach pre-
sented in this paper is that the semantics of a TGG rule is defined unambiguously.
A potential disadvantage is that some TGG rules become slightly more difficult
to reason about. Moreover, a merged language may suffer from compromises that
need to be made for satisfying the expectations of developers familiar with the
original languages. In the case of the proposed Controlled TGG language, we pre-
served the mapping of a TGG rule to its six operational rules. However, some of
these cases could never be triggered in the given example. This is a possible source
of confusion and runtime performance problems (due to redundant matching).

Language Integration By Metamodel Mapping The advantage of the approach from
[17] is that TGG rules remain simple by handling ambiguities only at the level of
the derived operational rules. The disadvantage from [17] is that without a proper
traceability tool, it is hard to understand the complete semantics of a set of TGG
rules. It should be noted that the emerging QVT standard [9] proposes a two-level
transformation language architecture as well which makes [17] applicable in that
context too.

Conclusion

This paper demonstrated the feasability of merging a declarative model transformation
language with an imperative one. By combining the advantages of Triple Graph Gram-
mars with those of Story Diagrams, compactness was reconciled with expressiveness.
This experiment raised an interesting research question for the language engineering
community: what are, in the context of language integration, the advantages of meta-
model merging over metamodel mapping and vice versa? Although a preliminary com-
parison could be given, more research in this direction should be conducted for enabling
a more mature tradeoff analysis.

15

References
1. A. v. Lamsweerde and R. Darimont and P. Massonet. The Meeting Scheduler System -

Problem Statement. Technical report, Université Catholique de Louvain - Département
d’Ingénierie Informatique, B-1348 Louvain-la-Neuve (Belgium), 1992.

2. Albert Zündorf. Rigorous Object Oriented Software Development. PhD thesis, University of
Paderborn, 2001.

3. Robert Balzer. Tolerating inconsistency. In ICSE ’91: Proceedings of the 13th international
conference on Software engineering, pages 158–165, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

4. S. Becker, T. Haase, and B. Westfechtel. Model-based a-posteriori integration of engineering
tools for incremental development processes. Journal of Software and Systems Modeling,
4:123–140, 2004.

5. Stephen Cranefield and Jin Pan. Bridging the gap between the model-driven architecture
and ontology engineering. Technical Report 2005/12, Department of Information Science,
University of Otago, Dunedin, New Zealand, November 2005.

6. Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel Bruel,
editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of Lecture Notes in
Computer Science, pages 128–138. Springer, Jan 2006.

7. Olaf Muliawan, Hans Schippers, and Pieter Van Gorp. Model driven, Template based, Model
Transformer (MoTMoT). http://motmot.sourceforge.net/, 2006.

8. Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging inconsistency in
software development. Computer, 33(4):pp. 24–29, 2000.

9. Object Management Group. MOF QVT Final Adopted Specification – ptc/05-11-01, 2005.
http://www.omg.org/docs/ptc/05-11-01.pdf.

10. Pieter Van Gorp, Frank Altheide, and Dirk Janssens. Traceability and Fine-Grained Con-
straints in Interactive Inconsistency Management. In Tor Neple, Jon Oldevik, and Jan
Aagedal, editors, Second ECMDA Traceability Workshop, 10 July 2006.

11. Robert Wagner. Consistency Management System for the Fujaba Tool Suite – MoTE/-
MoRTEn Plugins. https://dsd-serv.uni-paderborn.de/projects/cms/, 1 August 2006.

12. Doug Rosenberg and Kendall Scott. Use case driven object modeling with UML: a practical
approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

13. Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Leveraging UML profiles to generate
plugins from visual model transformations. Electronic Notes in Theoretical Computer Sci-
ence, 127(3):5–16, 2004. Software Evolution through Transformations (SETra). Satellite of
the 2nd Intl. Conference on Graph Transformation.

14. Andy Schürr. Progres: A visual language and environment for programming with graph
rewrite systems. Technical Report AIB 94-11, RWTH Aachen, Fachgruppe Informatik, 1994.

15. Andy Schürr. Specification of graph translators with triple graph grammars. In Proceedings
20th Workshop on Graph-Theoretic Concepts in Computer Science WG 1994, volume 903
of Lecture Notes in Computer Science, pages 151–163. Springer, 1995.

16. Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert Wagner,
Lothar Wendehals, and Albert Zündorf. Tool integration at the meta-model level: the Fujaba
approach. International Journal on STTT, 6(3):203–218, August 2004.

17. Pieter Van Gorp, Frank Altheide, and Dirk Janssens. Towards 2D Traceability in a Platform
for Contract Aware Visual Transformations with Tolerated Inconsistencies. In Enterprise
Distributed Object Computing Conference (EDOC), Hong Kong, 16 October 2006. IEEE.

18. Pieter Van Gorp, Hans Schippers, and Dirk Janssens. Copying Subgraphs within Model
Repositories. In Roberto Bruni and Dániel Varró, editors, Fifth International Workshop on
Graph Transformation and Visual Modeling Techniques, Electronic Notes in Theoretical
Computer Science, pages 127–139, Vienna, Austria, 1 April 2006. Elsevier.

16

