Available online at www.sciencedirect.com

SCienCEDi rect Procedia Computer

Science

E%

S

ESEVI ‘ Procedia Computer Science 00 (2011) 1]

International Conference on Computational Science, ICCS 2011

SHARE: a web portal for creating and sharing executable research papers
Pieter Van Gorp?, Steffen Mazanek®

“p.m.e.v.gorp@tue.nl, Eindhoven University of Technology, The Netherlands
bsteffen.mazanek @ gmail.com, Munich, Germany

Abstract

This extended abstract describes how SHARE (Sharing Hosted Autonomous Research Environments) satisfies the
criteria of the Elsevier 2011 Executable Paper Grand Challenge. SHARE is a web portal that enables academics to
create, share, and access remote virtual machines that can be cited from research papers. By deploying in SHARE a
copy of the required operating system as well as all the relevant software and data, authors can make a conventional
paper fully reproducible and interactive. Shared virtual machines can also contain the original paper text — maybe
even with embedded computations. In this extended abstract, we outline the workflow that we have leveraged to inte-
grate SHARE successfully in the publication workflow of a journal special issue and various workshop proceedings.
We also explain how SHARE is domain independent and how its architecture supports among others the challenge’s
licensing and scalability requirements.

Keywords: reproducible research, virtualization, web portal, challenge, executable paper, research 2.0

1. Introduction

SHARE [1]] has emerged from the organization of the Transformation Tool Contest (TTC, formerly known as
GraBaTs), a yearly event aimed at the evaluation and dissemination of advanced transformation techniques and related
software. Since TTC is a research contest, it attracts many submissions that rely on software that is still in the prototype
phase. This implies, among others, that

1. the software is sometimes not yet publicly released,

2. the software is often difficult to install or configure for proper use with particular inputs,

3. the software is often incomplete or only working in combination with other software, which in turn may require
a separate download, installation and license.

In other scenarios, one is struggling with license issues of the data sets that have been used to come to a particular
conclusion. Many papers also rely on very large data sets that, irregardless of license issues, are too tedious to
download as part of a paper reviewing task or when performing a literature survey and questioning the validity of the
alleged research results.

In all of these cases, it would be very convenient if one could simply click a hyperlink within a research paper
to arrive at an environment where all software and data related to the paper would be optimally installed and ready
for (temporary and secure) evaluation. Since 2009, we provide SHARE as a free academic service for simplifying as
much as possible the workflow for creating executable papers.

Pieter Van Gorp and Steffen Mazanek / Procedia Computer Science 00 (2011) l—@ 2

2. Perspective of the Readers of an Executable Paper in SHARE

This section introduces the SHARE system from the perspective of its most casual user, that is from the perspective
of the reader of an executable paper (reviewers or others).

Figure [T| shows a usage scenario that is typical for readers of a SHARE-supported publication. Via the browser
shown at bullet 1, the reader follows a link from a reference in a (conventional) article. This link points to a webpage,
where a specific virtual machine image can be instantiated. Assuming that the reader has never used SHARE before,
he first follows a registration procedure (shown at bullet 2). Existing users would simply log in, or would jump to the
screen from bullet 3 in case they were already logged in. On the screen shown at bullet 3, the user should just click
Request Session if he wishes to instantiate the hyperlinked virtual machine image immediately. The SHARE website
then balances the load between all virtual machine servers that host the requested virtual machine image. Moreover,
it enables users to reserve a future timeslot if all virtual machine servers are fully loaded (see field set “When?” on
the page from bullet 3).

Figure[T] bullet 4, displays SHARE’s main page. In the middle of the page, the details of active sessions are listed.
This involves (1) the physical machine at which the virtual machine is running and (2) the port on this server where
the Remote Desktop Protocol (RDP) server is listening. In this example, the user has one active session on port 6977
of the machine jobs.cmi.ua.ac.be. Bullet 5 shows how the user should enter that information in an RDP client. Users
should authenticate using their credentials from the SHARE website. Obviously, the last step (shown at bullet 6)
involves working remotely on the virtual machine. To emphasize that users can work concurrently on multiple virtual
machines, bullet 6 shows three active RDP sessions. RDP clients are available for most modern operating systems
(among others Windows, Linux and Mac). Note that SHARE thus supports multiple operating systems both at the
level of the remote virtual machines as well as at the level of the connecting clients.

3. Perspective of Volume Editors

In SHARE, each virtual machine is part of a so-called bundle. Typically, a SHARE bundle relates to a workshop
or to a journal issue. Users can subscribe to multiple bundles in order to access the respective machines. Any
SHARE user also can apply for bundle organization rights. As for other administrative workflows, this would involve
submitting a simple form, after which an automated e-mail would be sent to the SHARE users that have the appropriate
rights for authorizing the request. For this particular workflow, so-called bundle administrators would be notified [1].
Note that SHARE’s automated e-mails contain prepared links that minimize the administrative workload.

In most cases, volume editors want to advertize their (executable) papers as much as possible. SHARE not only
provides HTML and BibTeX code that can be conveniently adopted in this context, but also provides index pages
that enable anonymous visitors of the SHARE website to browse through the list of available virtual machine images.
Bundles that are of no interest to the general public can be hidden by their organizers.

4. Perspective of the Authors of Executable Papers

Authors can create new SHARE images based on existing ones by means of a simple “clone” operation. SHARE
ensures that clones are only created after approval of both the bundle organizer and the owner of the original image. In
many cases, authors simply clone one of the base images, as prepared by the bundle organizer. In other cases, authors
re-use images that they (or other authors) have previously contributed to SHARE. The latter often saves precious time
in practice.

Figure 2] visualizes the typical flow for the author of an executable paper in SHARE: in step 1, he selects the image
he wants to clone, in step 2, the bundle organizer as well as the image owner are notified of this request. Step 3 shows
that these stakeholders can decide to postpone the handling of individual requests and handle them in batch via the
SHARE website. In this example, we assume that both stakeholders approve the request. In step 4, the author (labeled
as demonstrator d in the figure) installs any software and data he wishes to share. As displayed by the red crosses,
other group members cannot yet launch virtual machines while the image is under preparation. Bullet 5 shows a
fragment from the author’s view in SHARE. This view provides an overview of all images to which the author has so-
called mutable (and private) access. As shown in the figure, the author can decide to finalize the image by publishing it
as an immutable image. Thereafter, it is visible to the peer group members. Alternatively, the image can be discarded

Pieter Van Gorp and Steffen Mazanek / Procedia Computer Science 00 (2011) 1 —@

T T T
o] L t]

T e L
g LA

prosisied e sarg |

(]

s s i apinl| S

= T e i]
g e
e e e |
Mgt b

| Hamoag, | amsns y | paediong | seceosay g0 _k__u..ﬁ__ L]

s Y

"AA S 0O O

- Ta

ALWH L S AwTAD L)

N

D e L s et Rt -~ I

[T T T

raccey fankang

TOISSaS Map] aamde)

[l L - B L e Y B
uw....m_..u_nu.u...u.u.......n_"u...n:..._"n_......____.".n.

Figure 1: Typical scenario for the reader of a journal special issue or of a workshop proceedings.

Pieter Van Gorp and Steffen Mazanek / Procedia Computer Science 00 (2011) l—@ 4

1 (N\

Request Mutable Disk Image

e enables you to become a demonstrator: you can request a mutable done of any existing
environment to make modifications, add your own tools, add samples, d 2ntation, ... Once you
have finished your demo, you can make it available to other users. Learn more...

Bundle Organizer &

Configure Request
Mutable version of: \l mage OWI‘]eI' j
[MoDELS 2010::¥P-TUe_MoDELS10.vdi =
Mnemonic name: [Eugenia
Maximum duration of sessions (optionall, in hours, 0 for infinity): [0 Requests that require your review:

+ Mutable access to VDI XP-Tls_MoDELSIO_Eugenia.vdi re
+ Mutable access to VDI XP-TUs_MoDELSIO_Henshin.vdi reques g by o)
Request Mutable Image + Mutable access to VDI XP-TUe_MODELSIO_PNZSC. vdl requested by pig)

1:Evaluator %

e2:Evaluator

® 2|

d:Demonstrator

Your mutable images:

+ XP-TUe_Designe _prep_ivdi @ Discard this disk (all changes are lost!)
K Publlsh lu all users of PVG Collab (further changes to VDI impossible!) (

» XP-TUa_BPMM_ivdi @ Discard this disk (all changes are lostl)
& Publish to all users of PVG Callab (further changes to VDI impossible!l)

+ ¥P-TUs_MoDELS10_EuGENia-statecharts.vdi @ Discard this disk (all changes are lost!)
& publish to all users of MoDELS 2010 (further changes to VDI impossible!)

EE e1:Evaluator ﬁ
e2:Evaluator %
_ d:Evaluator

Figure 2: Typical scenario for the author of an executable paper based on SHARE.

and the author can restart the workflow. As shown by bullet 6, we assume here that the author publishes the image.
All evaluators (e.g., el and e2 in the figure) as well as the author him- or herself (d in the figure) can now start virtual
machines for this image, without changing the shared image or seeing each other’s changes. This corresponds to the
reader perspective, as discussed in Section 2}

5. Related Work (Innovation over Current Options)

Seminal work related to executable papers has been contributed by Claerbout et al. in the early nineties [2]]. They
already applied automatic build tools to produce CD-ROM images that contained the research article, the correspond-
ing TeX source, related code and data, scripts to rebuild certain figures from the article automatically, and even a
special purpose TeX viewer to trigger these scripts while reading the article. Actually, SHARE makes it possible to
create a virtual machine with the full content of these CD-ROMs. All of the Claerbout-based executable papers, thus,
can be made permanently reproducible inside SHARE.

A more extensive discussion of how SHARE advances the state-of-the-art in the field of reproducible research
platforms is provided in [1]. [1] also surveys more recent work that implements Claerbout’s ideas[ﬂ All in all, the
most important advantage of SHARE over many other approaches is its flexibility.

I'See for example http: //wuw.reproducibility.org,

http://www.reproducibility.org

Pieter Van Gorp and Steffen Mazanek / Procedia Computer Science 00 (2011) l—@ 5

6. Conclusion

Several “executable articles” have already been prepared using SHARE. A representative example that highlights
potential features of SHARE articles is presented at a companion website for this abstract:

http://sites.google.com/site/executablepaper/

Note that a conventional article corresponding to this example has been published very recently by Elsevier [3].
Consequently, it is possible to directly compare the conventional article with its executable counterpart. The latter
indeed turns out to be much more useful. We strongly recommend to investigate this machine in order to get an
impression of the power of the SHARE approach.

Fulfillment of the Challenge’s Criteria

Executability: SHARE machines can be used very flexibly, so that, among others, interactive equations, tables
and graphs are possible and the particular experiment can be repeated and manipulated.

Short and long-term compatibility: SHARE’s only bottleneck with regards to durability is the hypervisor of its
underlying virtualization software. Currently, SHARE is built on top of Oracle’s (previously Sun Microsys-
tems’s) academic version of VirtualBoxEl But even in the event of discontinuation of that software, SHARE’s
layered architecture supports long-term availability.

Validation by reviewers: Opening the environment is just one click, provided the user is logged into the system
already. This simplifies the reviewing and the validation of the data and the code.

Copyright/licensing: SHARE enables authors already to restrict the time that their contributed virtual machine
image is used per session. Readers can upload files (e.g., test data) to remote virtual machines. However, they
can never download artifacts to their local computers. So far, SHARE has only be used academically. If the
Grand Challenge Sponsor aims to make SHARE virtual machines also available to industrial readers, then a
special purpose license needs to be developed and agreements with large software vendors have to be made [[1]].

Systems: Images are replicated across virtual machine servers. Changes in the infrastructure generally are
hidden from end-users. In the domain of high-performance computing, one can make the hardware available as
SHARE virtual machine server(s) and restrict the number of concurrent sessions on such servers.

Size: The SHARE approach saves reviewers/readers from downloading huge files. Moreover, disk usage can
be optimized on the server side: large data sets are typically mounted on special network drives that can be read
by multiple virtual machines.

Provenance: SHARE stores information about virtual machine sessions as well as the clone relations between
virtual machine images. Such information can be used to perform impact analysis. As discussed in [1f], one
could install in SHARE virtual machines existing software for tracking events (keybord and mouse actions) to
provide more detailed provenance functionality.

Project quality: SHARE has been stress-tested by the participants of numerous transformation tool contests. At
these events dozens of machines run in parallel. The machines containing the submitted solutions are reviewed
before as well as during the contest. New machines are created for all solutions of the workshop’s live contest
and evaluated afterwards. The feedback of the participants regarding SHARE has been very good so far.

Scope: The aim of the SHARE project is to provide a mature portal for making papers executable. Advanced
metadata functionality is out of scope, but integration with specialized existing solutions is not. SHARE already
provides integration with LiquidJournaﬂ a platform that enables authors as well as volume editors to combine
all artifacts related to a research paper into one integrated online publication that can be analyzed for citations
etc.

2See http://www.virtualbox.org/,
3Seehttp://project.liquidpub.org/research-areas/liquid- journal,

http://sites.google.com/site/executablepaper/
http://www.virtualbox.org/
http://project.liquidpub.org/research-areas/liquid-journal

Pieter Van Gorp and Steffen Mazanek / Procedia Computer Science 00 (2011) 1 —@ 6

o Feasibility of integration in publishing workflow and scalability: SHARE’s distribution of administrative tasks
across multiple organizers is key to the scalability from a publisher’s perspective.

7. References

[1] P. Van Gorp, P. Grefen, Supporting the internet-based evaluation of research software with cloud infrastructure, Software and Systems Modeling
(2010) 1-18d01:10.1007/s10270-010-0163-y.

[2] J. Claerbout, Electronic documents give reproducible research a new meaning, in: Proc. Ann. Int. Mtg Soc. of Expl. Geophys., 1992, pp.
601-604.

[3] S.Mazanek, M. Hanus, Constructing a bidirectional transformation between BPMN and BPEL with a functional logic programming language,
Journal of Visual Languages & Computing In Press, Accepted Manuscript (2010) —. [doi:10.1016/j.jv1c.2010.11.005.

http://dx.doi.org/10.1007/s10270-010-0163-y
http://dx.doi.org/10.1016/j.jvlc.2010.11.005

	Introduction
	Perspective of the Readers of an Executable Paper in SHARE
	Perspective of Volume Editors
	Perspective of the Authors of Executable Papers
	Related Work (Innovation over Current Options)
	Conclusion
	References

