
Noname manuscript No.
(will be inserted by the editor)

Graph Transformation Tool Contest 2008

Arend Rensink · Pieter Van Gorp

the date of receipt and acceptance should be inserted later

Abstract This special section is the outcome of the graph
transformation tool contest organised during the Graph-
Based Tools (GraBaTs) 2008 workshop, which took place
as a satellite event of the International Conference on Graph
Transformation (ICGT) 2008.

The contest involved two parts: three “off-line case stud-
ies” which were published before the contest, and to which
solutions were submitted and reviewed; and a “live contest”
for which the case description was only handed out during
the event, and to which solutions had to be constructed dur-
ing a single afternoon session.

Here we briefly sketch the off-line cases, and the setup
and topic of the live contest in somewhat more detail. We
also evaluate the results of the workshop, and give some rec-
ommendations for future editions. Finally, we introduce the
research papers appearing in this special section.

1 Background

Graph transformation started out in the beginning of the
1970s as graph grammars, a theoretical investigation into
the extension of formal language theory from string lan-
guages to graph languages. Software tool development to
support the formalism started twenty years later, in the
course of the 1990s, with PROGRES [17] and AGG [4]. It
was only with the help of tools that the graphs came to life,
which greatly helped to spread the popularity of graph trans-
formation as a modelling paradigm. At the moment there are

A. Rensink
University of Twente, Department of Computer Science, P.O. Box 217,
7500 AE Enschede, The Netherlands; E-mail: rensink@cs.utwente.nl

P. Van Gorp
Eindhoven University of Technology, School of Industrial Engineer-
ing, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; E-mail:
p.m.e.v.gorp@tue.nl

around a dozen ongoing tool development efforts that fall
under the broad header “graph transformation tools”.

Tool contest. To stimulate the development of graph trans-
formation tools, in 2007 we organised a first graph transfor-
mation tool contest [16]. This involved the comparison of
tools on the basis of three different, predefined case stud-
ies to which solutions could be submitted. The case studies
were selected to cover different aspects of graph transforma-
tion:

Prototyping. One of the advantages of graph transforma-
tion is the general and easy-to-grasp nature of the under-
lying graph formalism, and the straightforward way in
which graph changes can be encoded using transforma-
tion rules. This means that concepts from many different
domains can be easily captured, and a prototype model
describing a given system is rapidly developed.

Performance. The price to pay for the generality that makes
graph transformation widely applicable is the cost of
manipulating graphs, including storage, editing and
rule application. In particular, the latter involves graph
matching, which is an NP-hard problem. In applications
where graphs are large or the number of transformation
steps is large, it is therefore of supreme importance to
optimise tool performance.

Model transformation. An area in which graph transforma-
tion has especially taken off is as an underlying en-
gine for model transformation, which in turn is one of
the important concepts in modern software engineering
paradigms based on model-driven development. To be
well suited for model transformation, a tool has (among
other things) to be flexible and user-friendly, and to be
able to interface with other tools providing the actual
models.

2

This division was deemed successful, as was the concept of
a tool contest itself. Among the improvements suggested in
[16] were:

– Explicitly identify challenges and introduce criteria for
ranking;

– Organise the contest as a stand-alone workshop;
– Maintain less tight deadlines;
– Consider different categories of cases; e.g., verification.

Most of these recommendations were followed up in the
2008 transformation tool contest, organised as a separate
satellite event of ICGT 2008 (see [15]). Furthermore, as a
major innovation we also included a live contest. This in-
volved a case description that was handed out at the event,
and for which participants were asked to create a solution,
using the tool of their choice, during a single afternoon ses-
sion. Concretely, the cases were:

Program refactoring: a challenge to model existing refac-
toring transformations. This case study is extensively de-
scribed in the separate paper [14].

AntWorld simulation: a prototyping case with strong per-
formance aspects, briefly described in Section 2 below.

BPMN-to-BPEL transformation: a larger, realistic model
transformation case, based on [13]. Unfortunately, this
case received no submissions; it was eventually used for
the next instance of the tool contest (see Section 4).

Conference scheduling: the live contest case, described in
Section 3 below.

Special section. All workshop participants were asked to
improve their solution to the offline cases and/or the live
challenge, and submit the result to this STTT special sec-
tion. Each of the contributions to this section therefore takes
the perspective of a particular tool, describing how it was
used to solve one or more of the cases and what lessons have
been learned from this effort. This has resulted in the follow-
ing papers:

– Model Refactoring using MoTMoT [12], describing a so-
lution of the program refactoring case. The paper shows
that the required features of the case were all imple-
mented successfully, and some optional features were
implemented partially. It also discusses strengths and
weaknesses of MoTMoT in the context of the case study.

– Experimental Assessment of Combining Pattern Match-
ing Strategies with VIATRA2 [7], analyzing the pattern
matching strategies available in the tool VIATRA2 on
the basis of the AntWorld simulation case. The paper
contains an in-depth analysis of the complexity issues of
the AntWorld case and shows how the various pattern
matching optimizations available in the tool improve its
performance.

– Manual and Automated Performance Optimization of
Model Transformation Systems [10], analyzing several

optimization techniques for the tool VMTS on the basis
of the AntWorld simulation case. The paper compares
manual optimizations (exploiting knowledge about the
algorithms implemented in VMTS) with automatic opti-
mizations (exploiting similarities between rules) for the
matching phase of graph transformation, and shows that
the latter comes close to the speedup achieved by the
former.

– Introduction to AGG and EMF Tiger by Modeling a
Conference Scheduling System [1], describing solutions
of the conference scheduling case in AGG (a general
purpose graph transformation tool directly based on al-
gebraic concepts) and EMF Tiger (a modeling and code
generation framework for Eclipse applications). This re-
sults in a good insight in the relative strengths and weak-
nesses of both tools.

– GrGen.NET: The Expressive, Convenient and Fast
Graph Rewrite System [9], describing solutions to the
program refactoring, AntWorld and conference schedul-
ing cases. All cases were solved, and the performance
of the transformations is very good. The paper also dis-
cusses the design choices of the GrGen.NET tool in
some depth.

– Evaluation of Kermeta for Solving Graph-based Prob-
lems [11], describing solutions to the program refac-
toring, AntWorld and conference scheduling cases. For
each of these cases, the paper provides a comparison
to the solutions submitted for other tools, on the basis
of criteria such as genericity, extensibility and perfor-
mance. This is especially interesteing because the ap-
proach taken in Kermeta is to translate the graph-based
concepts to Alloy and use SAT-solving to evaluate the
transformations.

– Fujaba Case Studies for GraBaTs 2008: Lessons
learned [5], also describing solutions to the program
refactoring, AntWorld and conference scheduling cases.
Besides giving a good impression of the capabilities
of Fujaba, the paper also discusses tool improvements
based on the experience gained in carrying out the case
studies.

In the remainder of this introductory article, we give a sketch
of the AntWorld case (Section 2) and a more comprehensive
description of the live challenge (Section 3). We end with an
evaluation of the workshop itself (including the outcome of
the contest) and some further recommendations (Section 4).

2 The AntWorld case

The following description is copied (with some minor
changes) from http://www.se.eecs.uni-kassel.de/∼fujabawiki/
index.php/AntWorld; thanks to Albert Zündorf for generously
allowing to include the text here.

http://www.se.eecs.uni-kassel.de/~fujabawiki/index.php/AntWorld
http://www.se.eecs.uni-kassel.de/~fujabawiki/index.php/AntWorld

3

The AntWorld simulation consists of an ant hill sitting
in the middle of a large area. The ants are moving around
searching for food. If an Ant finds food, it brings the food
home to its ant hill in order to grow new ants. On its way
home, the ant drops pheromones marking the path to the
food reservoir. If an Ant without food leaves the hill or if
a searching ant hits a pheromone mark, the ant follows the
pheromone path to the food. This behavior already results in
the well known ant trails.

The area grid. Since this is a case study for graph trans-
formation tools, the area in which the ants move shall be
modelled by a grid of nodes. In order to enable the ants to
go home on a straight path, if they have found some food,
the area grid shall look like a spider’s web, cf. Figure 1.

In the center of the grid there is the ant hill. The first
circle around the ant hill consists of 4 ‘exit’ fields. In the
second circle, each exit field has three child fields. In the
next circle, the 4 fields on the main axis have three child
fields while the normal fields have just one child field. This
scheme creates a quite regular grid where each field has a
quite straight path to the hill in the center of the grid.

In Figure 1, the ants have not yet found any food; conse-
quently none of the fields have associated pheromes.

Ant moves. The AntWorld simulation works in rounds.
Within each round, each ant does one move. The ant be-
havior depends on the following modes:

– If the ant has no food and is on a field with food, it takes
one piece of food and enters the food carrying mode. It
may still move within the current round.

– If the ant carries some food, it follows the links towards
the ‘inner’ circle. Thus, the ant moves towards the ant
hill by one circle. During its way home, on each visited
grid node (including the ‘food’ node), the ant drops 1024
parts of pheromones. This guides other ants to the food
place. Note that, if an ant drops new pheromones on an
already marked grid node, this new pheromone parts are
added to the already existing parts.

– If an ant with food is on the hill node, it drops the food
and enters the search mode. It may leave the hill within
the same round.

– An ant without food is in search mode. In search mode,
the ant checks the neighbour node(s) of the next outer
circle for pheromones. If there are neighbour nodes
on the next outer circle with more than 9 parts of
pheromones, the ant chooses one of these fields, ran-
domly. The random choice shall be fair based on usual
mechanisms for random choices, e.g. Java class Random
may be used.

– If the ant is in search mode and no outer neighbour has
sufficient pheromones, the ant moves to any of its neigh-

bour fields based on a fair random choice. (However, an
ant without food shall not enter the ant hill.)

General area management.

– Initially, the area grid shall consist only of the hill and
the first two circles. In addition, the hill shall contain 8
ants. No food is initially provide on the grid.

– Whenever during one round an ant enters the currently
outmost circle (i.e. the border of the yet known area),
a new circle of nodes shall be created. During the cre-
ation of this next circle, every 10th node shall carry 100
parts of food. If a circle has e.g. 28 nodes, node 10 and
node 20 of that circle shall have food. Thus, this cir-
cle would need just 2 more nodes to create a third food
place. Therefore, these 8 nodes are kept in mind and dur-
ing the creation of the next circle (in our example with
36 nodes) we add another food place when 2 more nodes
have been added. Thus, accross circles, every 10th node
becomes a food place.
Note that, according to this schema, we create 10 parts of
food per one grid node. Since each food part may result
in one ant, one might expect quite a lot of ants in this
simulation. However, in our test runs, we observed an
average of 1 ant per 5 fields (on the long run). It seems,
that due to the random search strategy, even this large
number of ants have difficulties to find food far away
from the hill.

– After each round, the pheromones shall evaporate. This
is needed in order to erase an old ant trail once the food
has drained. Thus, after each round, on each grid node,
the number of pheromones shall be multiplied by 0.95.
In case of a fraction, the number shall be rounded to the
next smaller natural number.
Using the factor 0.95 and 1024 start pheromones per
drop, the number of pheromones on a grid node drops
below 10 within roughly 100 rounds. Thus, a single ant
may be able to travel about 50 steps home to its hill, drop
the food and travel about 50 steps out following its own
pheromone path back to the food place. Food places with
a distance of more than 50 circles need the collaboration
of multiple ants that pick up the ant trail and refresh it,
continuously.

– After each round, the hill shall consume the food
brought to it and it shall create one new ant per delivered
food part. These new ant spread out in the next round.

Implementation remarks.

– Grid nodes, ants and the hill shall be modeled as explicit
graph nodes. Ant positions on grid nodes shall be mod-
elled using a link. Multiple ants are allowed on the same
grid node.

4

Field
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Food
pieces = 10

Ant

Ant

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Food
pieces = 10

Exit
Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Ant

Exit
Field
pheromones = 0

Field
pheromones = 0

Field
Hill
food = 0
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0 Ant

Field
pheromones = 0

Field
pheromones = 0

Exit
Field
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Exit
Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Ant

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

Field
pheromones = 0

next

out

next

out
out

out

at

at

next

next

next

out

next

next

nextnext

next

out

out

out

out

next next

next

out

next

out

next

at

at

out

next

next

next

next

out

atnext

out

out

out

next

out

nextout

at

next
out

out

next

out

next

out

out

out

next

next

out

out

out

out

out

next

out

next

next

next

at

next

out

out

next

at

out

at

at

out

out
next

out

next

next

Fig. 1 Example of an ant heap

– The number of food parts and pheromones on a grid
node or in the hill may be modeled as an integer at-
tribute. Note that there are ten times as many food parts
as grid nodes, and quite a lot of pheromone parts. Mod-
eling these parts as explicit objects would result in a
benchmark measuring mainly the creation and deletion
of food (and pheromone) objects which is not our inten-
tion. This benchmark is designed to measure the execu-
tion of rules with local search.

Goals

– Each tool shall model and run the AntWorld according
to above rules.

– We would like to see some nice animations showing the
ants and how they search for food and form ant trails.

– For performance measurement, the simulation may run
without a GUI. The results shall be illustrated by a ta-
ble and or diagram showing for reasonable numbers of
rounds the number of circles of the grid, the number of
nodes of the grid (4 × #circles2), the number of food
parts created, the number of ants created, and the total
execution time.

3 Live case

This part is structured as follows: section 3.1 describes de-
sign considerations for the live contest case, section 3.2 de-
scribes the structure of the live contest, section 3.3 describes
the domain of the case study and 3.4 discusses the concrete
challenges for which participants have competed.

3.1 Design Considerations

We designed the live contest to minimise a well-known
threat to the validity of the contest results. More specifically,
we designed the case study description to minimise the im-
pact of individual participant characteristics. This resulted
in the following decisions:

Provide Reference Metamodels By providing metamodels
from a reference solution, the case description levels out
differences in the analytical skills of the participants.

Allow Variations on that Reference Since any reference ap-
proach can in fact be against a particular transforma-
tion approach, we decided to allow small variations to
the reference metamodel. This decreases the likeliness
that the success or failure of a transformation language
and/or tool is due to detailed restrictions of the reference
metamodels.

3.2 Structure

Organisationally, the following goals were taken into ac-
count:

Enable Diversification The case description was designed
as a set of loosely coupled tasks. Participants should be
able to tackle those tasks for which their tool was most
suitable while ignoring other tasks. A small drawback
is that a detailed face-to-face comparison is not possible
between all solutions. However, the results of the contest
can be interpreted more easily by outsiders: a team that

5

chooses to solve a task and manages to beat other teams
with that, clearly shows in what case the underlying tool
is better than the competition.

Mandatory Base Challenge The case description was di-
vided in two parts: the core was shown at the start of the
contest. Only after a participant had finished this part (or
when giving up that part), the organisers explained the
set of optional challenges to that participant. This en-
sured that the tools could at least be compared directly
in terms of some common criteria.

Start from Optimal Setup Participants were informed in ad-
vance that they should use their own laptops to enable
them to work with an optimally configured operating
system and tool configuration. This design choice makes
it impossible to compare the participating teams on the
tool installation process but makes it easier to compare
the teams on other aspects. Similarly, the delivery of
end-results was organised via a simple transfer of an
archive file. Making the result reproducible on a new
machine was outside the scope of the contest.

Participants were asked to give a small demo as soon as
they had completed a particular task. When satisfying all
requirements, the organisers took note of the time that was
spent so far. Participants could choose between a horizon-
tal approach (trying to complete all tasks in a minimalistic
manner as soon as possible) and a vertical approach (try-
ing to complete one task in an excellent manner). Mind that
while teams were conducting the live contest, another group
of workshop participants was still discussing on a system-
atic way of assessing the results. In the meanwhile, we have
learned that it is better to simply impose one ranking mech-
anism and explain that mechanism clearly before the start of
the contest.

3.3 Domain of Case Study

The case study for the live contest was entitled “Conference
Scheduling”. Since all participants to the workshop attended
academic conferences frequently, they should be naturally
familiar to the problem domain. Therefore, no workshop
participant should have lost time on getting familiar with
domain terminology.

In a plenary session, the contest organisers sketched the
domain as follows:

A conference consists of presentations presented by
persons (the presenters). A presentation relates to
exactly one paper and therefore the terms Presenta-
tion and Paper can be used almost interchangeably.
Presentations are grouped in sessions. Sessions may
run in parallel. Each session is chaired by a person
(the session chair). One person may present one or
more presentations and chair one or more sessions.

A session chair may present one or more presenta-
tions in the session he or she chairs.

Based on the obvious constraint that no one can
be at more than one place at a time, the following
domain-specific constraints apply:
1. there are no simultaneous presentations given by

the same presenter,
2. no presenter is chairing another session running

simultaneously,
3. nobody chairs two sessions simultaneously.

As a concrete example, the configuration shown on Fig-
ure 2 was used as a running example for the live contest. In
this example, there are three sessions. Mind that “Gogolla”
illustrates that a chair can present one or more presentations
in the session he is chairing: Gogolla chairs session S1, in
which he presents paper P1. “Van Gorp” chairs session S2
and presents paper P3 in session S1. “Schippers” presents
a paper in each session of the hypothetical conference but
does not chair any session. Conversely, “Hirschfeld” chairs
a session but does not present a paper. Although not illus-
trated by this running example, a person can chair multiple
sessions on one conference. Additionally, it may occur that
the number of presentations varies between sessions of the
same conference.

After this explanation, a team of participants asked
whether the names of the papers (P1 to P3) implied a par-
ticular order. The organisers clarified that there is no such
order intended in the input graph. A conference organiser is
only concerned about grouping related papers (i.e. the ses-
sion concept) and has to figure out an ordering that phys-
ically enables people to show up for all their chairing and
presentation duties.

3.4 Award Challenges

3.4.1 Core Challenge

A conference schedule is defined as a mapping from presen-
tations to timeslots. The core challenge has been formulated
as follows [6]:

Given the three example sessions, enumerate all
valid schedules (= without conflicts)

– with only 6 timeslots available,
– with papers from the same session on consecu-

tive timeslots,
– with unused timeslots only at begin (or end) of a

schedule.

In practice, a solution was marked “working” when two
valid schedules could be generated automatically using
graph transformation rules. In the context of the core chal-
lenge, teams were allowed to hardcode a solution for the

6

Fig. 2 Example instance graph from the “Conference Scheduling” domain.

Fig. 3 Reference metamodel for the “Conference Scheduling” domain.

configuration shown on Figure 2. When checking a solu-
tion, the organisers did not ask to demonstrate the solution
for a different number of papers, sessions, or chairs. The un-
derlying idea was that the extensibility of a design and/or
flexibility of a language or tool would be measured after the
completion of the core assigment.

Participants were encouraged to start from the meta-
model shown on Figure 3. For the core assignment, the refer-
ence instance graph contains a sequence of six linked Times-
lot instances. The transformation should create nine edges
with the when label, without violating constraints.

The following sections list the five additional challenges
from the live contest. Mind that these challenges were op-
tional and could be tackled in any order. For each additional
challenge, the team with the best solution was awarded with
a certificate.

3.4.2 Additional Challenge 1: adaptable instance
generation

For this challenge, contestants were asked to make their
transformation system flexible enough to be able to create
on the fly schedules for conference configurations other than
the one shown on Figure 2. Additionally, the solution should
be able to automatically complete incomplete input graphs
based on constraints that were defined on the fly as well.

As a baseline, challenge 2 was formulated as follows:

Generate all possible instances of Paper, Session,
Person, Slot, with adaptable restrictions, like:

– there should be exactly 5 persons,
– there should be exactly 3 session,
– there should be exactly 6 slots,
– there should be three papers per session,
– at least one person is chair and presents two pa-

pers,
– at least one person is presenting in 2 different

sessions.

In practice, the organisers looked at the input configuration
and the constraints that were used by a particular team and
asked to make some modifications. A team then needed to
show valid schedules and possibly automatically completed
parts of the input graph. Teams could leverage this opportu-
nity to demonstrate how their tool facilitated an efficient vi-
sualisation of generated graphs (automatic layout, automatic
color assignment, extraction of views, ...)

To give participants a concrete reference solution for this
challenge, the organisers showed some instances that were
generated automatically by the Alloy tool [8]. The organis-
ers pointed to strong points (e.g., specialisation features for
the automatic layouting mechanism) and weak points (e.g.,
the lack of a means to store views on the output instance
graphs).

Figure 4 shows an instance generated by Alloy. In fact,
we have not been able to use Alloy for creating instances
that were much larger than the one shown on that Figure.
The complexity of the underlying constraint solving tech-
nique leads to execution times easily lead to virtually infinit
execution times. Interestingly, the graph transformation so-
lutions described in this special issue scale better.

7

Fig. 4 Generated conference instance with 7 presenters and one person chairing more than one session.

8

3.4.3 Additional Challenge 2: verification of properties
(model checking)

This challenge was aimed at evaluating whether a tool sup-
ported the definition and automatic verification of properties
of the graph transformation system. In practice, the organ-
isers verified whether a particular transformation tool was
able to realise checks equivalent to the two Alloy examples
shown on Figure 5.

The Alloy predicates shown on the left of Figure 5 cor-
respond to parts of the graph transformation system that
participants had to construct for solving the core challenge:
the conflicting predicate formally expresses when two pre-
sentations are in conflict whereas the scheduleWithoutCon-
flicts predicate formally states that conflicting presentations
should be scheduled on different timeslots. For the model
checking challenge, contestants had to verify whether or not
their graph transformation system satisfied the properties
shown on the right of Figure 5. The conflictingStrongSym-
metric constraint checks whether a conflict between two pre-
sentations x and y always corresponds to a conflict between
y and x. The scheduleWithoutConflictsVERIFY constraint
checks whether the system never generates schedules for
which a person needs to be present on two different places
at the same time.

Additionally, the scalability of the verification support
was evaluated: can a tool verify the properties from Figure 5
(i) in general, or (ii) for inputs corresponding to a realistic
multi-conference, or (iii) only for very small inputs? Teams
were also invited to illustrate other verification features to
make their solution stand out of the competition.

3.4.4 Additional Challenge 3: flexibility (extensibility)

This challenge was aimed at evaluating wether a solution to
the core challenge could easily be extended to satisfy a new
requirement. For this purpose, the core challenge was ex-
tended with the notion of room availablity. For each times-
lot of a conference configuration, the input graph then has
a number of associated artifacts (representing a room at one
point in time) that can be reserved for a particular presenta-
tion. Instead of mapping presentations to timeslots directly,
they now need to be mapped to such so-called Reservable
instances.

In practice, the organisers checked wether a solution
could deal with configurations such as:

– two rooms are available during six consecutive times-
lots,

– a conference spans four days, for which there are three
timeslots before noon and three timeslots in the af-
ternoon. Before noon, there are three rooms available
whereas in the afternoon there is only one room avail-
able.

3.4.5 Additional Challenge 4: user interface construction

This challenge was aimed to evaluate the meta-case (con-
crete syntax definition) functionality of the tools. To be pre-
cise: this challenge was designed specifically to enable tools
such as AToM3, GMF and TIGER [3] to show features that
are not supported by pure transformation tools such as AGG,
GrGen and MOMENT2GT.

In the context of the conference scheduling case, a user
interface for entering sessions (presentations, presenters,
chairs) had to be implemented with minimal effort. For ex-
ample, a tool such as AToM3 enables one to annotate meta-
classes with some shape definitions (such as a bitmap of
a paper, a person, . . .) and layout properties (e.g., a con-
tainment constraints between a Session symbol and a Paper
symbol). The tool can then generate an editor from the an-
notated metamodel automatically.

Ideally, a user interface automatically suggests candi-
date elements (auto-completion) and integrates with the au-
tomatic transformation system. On the other hand, it may
be desirable to override schedules that are generated auto-
matically. Thus, a user interface should also facilitate the
manual/interactive assignment of presentations to timeslots.

Another user-interface related feature is the support for
views. A view is a diagram that only shows a limited set of
elements (and/or a limited set of attributes from such ele-
ments) from the underlying graph. Again, the Alloy-based
reference solution can make this concept concrete: Alloy
enables one to visualise only nodes of a particular type by
clicking some checkboxes in the tool’s user interface. For
producing Figure 4, we indicated that only nodes of type
Session, Presentation and Person should be shown. Simi-
larly, we restricted the amount of visible edges. Other mech-
anisms to construct views on the underlying graph are miss-
ing: it is for example impossible to manually select elements
that need to be hidden or shown in a view.

Moreover, the Alloy tool has only very limited support
for overriding the position of automatically layouted ele-
ments. For producing Figure 4, we already optimized the
position of the graph nodes manually. Unfortunately, ele-
ments cannot be moved to different rows from the under-
lying layout grid. This illustrates that in many cases, authors
would therefore redraw Alloy output using another draw-
ing tool instead of using Alloy diagrams directly as figures
for an article. Clearly, such overhead is undesirable because
inconsistencies may arise when the Alloy solution changes
and the diagrams need to be updated manually in the ex-
ternal tool. Graph-based tools can learn from this negative
example and should illustrate how automatic layouts can be
adjusted without the risk for inconsistencies.

9

pred conflicting[p1,p2:Presentation] {
 p1!=p2 and (
 p1.presenter=p2.presenter or (
 p1.session!=p2.session and (
 p2.presenter = p1.session.chair or
 p1.session.chair=p2.session.chair
)
)
)
}

fact scheduleWithoutConflicts {
 no disj r1, r2: Reservable |
 r1.time=r2.time and
 conflicting[r1.~when, r2.~when]
}

/* check that conflicting is OK */
assert conflictingStrongSymmetric {
 all p1, p2: Presentation |
 conflicting[p1,p2]
 <=> conflicting[p2,p1]
}

/* check that allocation is OK */
assert scheduleWithoutConflictsVERIFY {
 no disj pres1, pres2: Presentation |
 pres1.presenter=pres2.presenter
 and pres1.when.time=pres2.when.time
}

Fig. 5 Example properties that can be checked using Alloy. Challenge: check using transformation tool.

3.4.6 Additional Challenge 5: interoperability

In general, the interoperability was aimed at verifying how
easily the graphs from a particular transformation tool could
be exported (and imported) into (and from) a structure that
could be processed by a third-party tool.

As a concrete challenge, graphs conforming to the con-
ference metamodel should be mapped to graphs conform-
ing to a pure graph metamodels (consisting of only a node
and an edge metaclass and an association between those). In
this mapping, a node should be generated for each presen-
tation and an edge should be generated for each conflicting
pair of presentations. The resulting graph structure should
be processed by an off-the-shelf program for computing a
minimal coloring. In this case, a graph should be k-colorable
if the conference could be scheduled in k sequential times-
lots. Obviously, after applying the third-party coloring al-
gorithm, the results should be mapped back to the confer-
ence graph. This task provides a basis for comparing the
traceability support of a particular transformation approach:
some approaches are known to support traceability implic-
itly whereas in other approaches, the transformation writer
needs to manage traceability links explicitly.

Figure 6 shows as an example a visualisation of a graph
that corresponds to the conference model shown on Figure 2.
A first type of dashed edges connects nodes P1, P2, and P3
as well as nodes P4, P5 and P6 as well as nodes P7, P8 and
P9. This type of edges expresses that presentations in the
same session cannot occur at the same time. A second type
of dashed edges connects P2, P4 and P7. This type of edges
expresses that papers from the same author cannot be pre-
sented at the same time. In our running example, the author
of P2, P4 and P7 is “Schippers”. Finally, solid edges express
that a paper cannot be presented while the author is chairing
another session.

P1 P2

P7 P8 P9

Same session

Same presenter

Busy as chair

Graph with colorable nodes

P3

P6P5P4

Fig. 6 Instance from the Graph domain, based on the conference do-
main instance shown on Figure 2.

During the contest, the organisers also showed this ex-
ample output graph to the participants but did not show a
valid minimal coloring. The interested reader is referred to
the article of Biermann et al. for an elaborated solution [1].
Mind that that solution relies on explicit traceability link
management.

4 Evaluation

Offline cases. The workshop had 12 submissions to the of-
fline cases: 7 for the AntWorld case, and 5 for the Program
Refactoring case. The BPMN-to-BPEL case, on the other
hand, did not receive any submissions. This number was
lower than for the 2007 tool contest, where the three cases
received, on the average, 11 solutions. For this several ex-
planations can be offered:

– The timeframe for submitting solutions to the 2008 con-
test was in May/June, compared to September in 2007.
It is likely that for many potential submitters, the early
summer period was an obstacle to prepare and submit a
solution, especially since the submission deadlines were
once again tight.

10

– The 2007 event took place as part of a conference on
industrial applications of graph transformation, whereas
the 2008 event was colocated with a theoretically ori-
ented conference. Thus, potential submitters may have
found it more difficult to justify travelling to the event.

The fact that there were no submissions to the model trans-
formation case (BPMN-to-BPEL) may be explained by its
(relative) complexity. Indeed, though explicit attempts were
made to solicit submissions, it was clear from the reactions
that there was insufficient time to prepare solutions. More-
over, as observed above, the hosting event (ICGT) has a
strong theoretical flavour in core graph transformation the-
ory, with which those tools that were most likely to deal with
this type of case may have had less affinity.

Finally, we observed that authors spent rather limited ef-
fort on performing detailed comparisons of their solution
with that of other participants. An obvious explanation is
that it takes a lot of time to install all software prerequi-
sites and all data for reproducing the involved research pro-
totypes.

Live contest. 11 teams took part in the live case. 4 teams
have submitted a solution in time, in the following order:
the GrGen.NET team, the Fujaba team, the Progres team and
the EMT team. Teams that decided not to submit a solution
could continue working and were not forced to present an
incomplete result on the second day of the workshop. The
atmosphere of the workshop was competitive yet remark-
ably constructive: even a team that was unable to show any
result, did not complain about details in the assignment. In-
stead, the team analyzed why their tool did not perform well
and participated again in the 2009 edition of the contest!

Contest outcome. The outcome of the contest was deter-
mined on the basis of a procedure in which after a plenary
presentation of the solutions all participants could rank them
in several predefined categories; the final grade was calcu-
lated as a weighted average. Although as organisers we are
well aware of the weak points of this procedure, we feel that
the value of actually selecting a “best solution” outweighs
the objections, as long as it is recognized that this only ac-
knowledges the quality of the awarded solution and does
not devaluate the others. The outcome (also documented at
http://fots.ua.ac.be/events/grabats2008/) was:

– Best refactoring Solution: Fujaba [5]
– Best AntWorld Solution: VMTS [10]
– Best live contest solution, separated into core and addi-

tional challenges:
– Core: Shared beteen GrGen.NET [9] and Fujaba [5]
– Instance generation: EMF [1]
– Flexibility: GrGen.NET [9]
– User interface: MoTif/AToM3 (not submitted to this

special section)

– Interoperability: AGG [1]

Recommendation. Here we list some recommendations
based on the evaluation above. Since the next edition (Gra-
BaTs 2009) has in fact already taken place, as a satellite of
TOOLS and ICMT 2009, we also review what we have done
to implement our own recommendations.

– Look for a less theoretically oriented hosting event. In
fact, the 2009 colocation with ICMT (International Con-
ference on Model Transformation) has proved to be ben-
eficial: attendance was way up from the 2008 event.

– Reuse the model transformation case. We did reuse this
case in the 2009 edition; there were 10 submissions.

– Strengthen the evaluation criteria in the offline cases. In
the call for cases, we requested explicit evaluation crite-
ria. Indeed, all case descriptions included such criteria.
Still, it turned out to be hard to actually compare solu-
tions based on these criteria, as most of them were qual-
itative and subjective.

– Provide a reference solution for the live challenge. For
the GraBaTs 2008 live contest, we had constructed the
Alloy reference solution described in Section 3. For fu-
ture editions of the tool contest, the organisers plan to
spend even more time on reviewing the quality of the
reference solution. A good reference solution helps to
resolve ambiguities in the case description without loos-
ing costly time during the workshop.

– Use a live contest challenge with variation points. Ac-
cording to our evaluations, the live contest has a high
degree of participant satisfaction because more than one
award can be won (see Section 3.2). Therefore, we plan
to follow this format for future editions of the contest.

– Support and stimulate peer review. During GraBaTs
2008, we experienced severe problems when try-
ing to upload all solutions to a reference server in
order to run some benchmark tests. To overcome
these problems, we have constructed during 2008-
2009 a novel system, called SHARE, for remotely in-
stalling and running all applications on the same hard-
ware. Please refer to http://is.ieis.tue.nl/staff/pvgorp/share/
?page=ListImages&bundle=GraBaTs08 for the result: that
page and the underlying system enable the reader of
this special section to reproduce all alleged results with-
out having to install any graph transformation tool. A
detailed discussion of the SHARE system and a com-
parison with other approaches to reproducible research
can be found in a dedicated article [18]. We are con-
vinced that SHARE solves most of the technical obsta-
cles that participants previously faced when trying to
compare each other’s solutions. Nevertheless, we ob-
serve that active community building (e.g., via http://
planet-research20.org/ttc2010/ remains necessary to stim-

http://fots.ua.ac.be/events/grabats2008/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ListImages&bundle=GraBaTs08
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ListImages&bundle=GraBaTs08
http://planet-research20.org/ttc2010/
http://planet-research20.org/ttc2010/

11

ulate the peer reviewing of each other’s software and
data.

References

1. E. Biermann, C. Ermel, L. Lambers, U. Prange, O. Runge, and
G. Taentzer. Introduction to AGG and EMF Tiger by modeling
a conference scheduling system. Special Section on the Graph
Transformation Tools Contest 2008, STTT, in this issue, 2010.

2. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds.
Handbook of graph grammars and computing by graph transfor-
mation: applications, languages, and tools, vol. 2. World Scien-
tific Publishing Co., Inc., 1999.

3. K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of
visual editors as eclipse plug-ins. In ASE’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software
engineering, pp. 134–143, New York, NY, USA, 2005. ACM.

4. C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Lan-
guage and environment. In H. Ehrig et al. [2], pp. 551–603.

5. L. Geiger and A. Zündorf. Fujaba case studies for GraBaTs 2008:
Lessons learned. Special Section on the Graph Transformation
Tools Contest 2008, STTT, in this issue, 2010.

6. P. V. Gorp. GraBaTs 2009 Live Tool Contest (slideset).
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2008/
GraBaTs-part1.pdf and http://is.ieis.tue.nl/staff/pvgorp/
events/grabats2008/GraBaTs-extra.pdf, Sept. 2008.

7. A. Horváth, G. Bergmann, I. Ráth, and D. Varró. Experimental
assessment of combining pattern matching strategies with VIA-
TRA2. Special Section on the Graph Transformation Tools Con-
test 2008, STTT, in this issue, 2010.

8. D. Jackson. Alloy. http://alloy.mit.edu/, Oct. 2009.
9. E. Jakumeit, S. Buchwald, and M. Kroll. GrGen.NET: The expres-

sive, convenient and fast graph rewrite system. Special Section on
the Graph Transformation Tools Contest 2008, STTT, in this issue,
2010.

10. T. Mészáros, G. Mezei, T. Levendovszky, and M. Asztalos. Man-
ual and automated performance optimization of model transforma-
tion systems. Special Section on the Graph Transformation Tools
Contest 2008, STTT, in this issue, 2010.

11. N. Moha, S. Sen, C. Faucher, O. Barais, and J.-M. Jézéquel. Eval-
uation of Kermeta for solving graph-based problems. Special Sec-
tion on the Graph Transformation Tools Contest 2008, STTT, in
this issue, 2010.

12. O. Muliawan and D. Janssens. Model refactoring using MoTMoT.
Special Section on the Graph Transformation Tools Contest 2008,
STTT, in this issue, 2010.

13. C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P.
van der Aalst. Pattern-based translation of BPMN process mod-
els to BPEL web services. International Journal of Web Services
Research, 5(1), Jan. 2008.

14. J. Pérez, Y. Crespo, B. Hoffmann, and T. Mens. A case study to
evaluate the suitability of graph transformation tools for program
refactoring. Special Section on the Graph Transformation Tools
Contest 2008, STTT, in this issue, 2010.

15. A. Rensink and P. V. Gorp. Graph-based tools: The contest. In
H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, eds., ICGT,
vol. 5214 of Lecture Notes in Computer Science, pp. 463–466.
Springer, 2008.

16. A. Rensink and G. Taentzer. AGTIVE 2007 graph transformation
tool contest. In A. Schürr, M. Nagl, and A. Zündorf, eds., AGTIVE,
vol. 5088 of Lecture Notes in Computer Science, pp. 487–492.
Springer, 2007.

17. A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach:
language and environment. In H. Ehrig et al. [2], pp. 487–550.

18. P. Van Gorp and P. Grefen. Supporting the evaluation of research
software with cloud infrastructure. Software and Systems Model-
ing, special issue on Model Based Interoperability, ?(?), 2010.

http://is.ieis.tue.nl/staff/pvgorp/events/grabats2008/GraBaTs-part1.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2008/GraBaTs-part1.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2008/GraBaTs-extra.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2008/GraBaTs-extra.pdf
http://alloy.mit.edu/

