Flexible Heuristics Miner (FHM)

A.J.M.M. Weijters
Eindhoven University of Technology
Email: a.j.m.m.weijters@tue.nl

J.T.S. Ribeiro
Eindhoven University of Technology
Email: j.t.s.ribeiro@tue.nl

Abstract—One of the aims of process mining is to retrieve a process model from a given event log. However, current techniques have problems when mining processes that contain non-trivial constructs, processes that are low structured and/or dealing with the presence of noise in the event logs. To overcome these problems, a new process representation language is presented in combination with an accompanying process mining algorithm. The most significant property of the new representation language is in the way the semantics of splits and joins are represented; by using so-called split/join frequency tables. This results in easy to understand process models even in the case of non-trivial constructs, low structured domains and the presence of noise. This paper explains the new process representation language and how the mining algorithm works. The algorithm is implemented as a plug-in in the ProM framework. An illustrative example with noise and a real life log of a complex and low structured process are used to explicate the presented approach.

I. INTRODUCTION

Modern enterprises are increasingly becoming dependent on the quality of their business processes. This explains why, within organizations, there has been a shift from data orientation to process orientation. A necessary first step to improve business processes is the correct understanding of these processes. Process mining [1] aims at the extraction of non-trivial information from running business process data sets (i.e., event logs or transition logs) and can contribute to this understanding. Control-flow mining, conformance checking or performance analysis are possible applications of these techniques. The main focus of the research presented in this paper is on control-flow mining, i.e., the induction of non-trivial process information from running business processes expressed in a process model.

This paper presents the details of a heuristics-driven control-flow mining algorithm; the so-called “FlexibleHeuristicsMiner” (FHM). It is an updated version of the HeuristicsMiner (HM) [8] as implemented in ProM framework [3]. From practical experiences with the HM during different process mining projects, we learned that not all advantages of the basic ideas underlying the HM are completely exploited. In this new version, the FHM, we try to take all the advantages of the basic ideas of the HM. The result is an adapted process representation language (C-nets), an accompanying mining algorithm (FHM), and so called augmented-C-nets. The FHM is implemented in a new version of ProM (version 6.0).

A lot of work in this sub-domain is already done. See [1], [6] for an overview. Most of early solutions try to model all the recorded behavior in the event log by using a formal process modeling language (e.g., the Petri net formalism).

However these kinds of approach run in problems in less-structured domains such as the ones that can be found in health care applications. The resulting models may easily become unreadable if the model contains a high number of tasks and complex relationships. As an illustration Fig. 1 shows a typical control-flow mining result on a realistic event log from the health care domain. The event log contains 2259 cases, 34187 events, and 255 different event classes. The term spaghetti model used for this kind of results does not need any explanation. On the other hand, simple models like EPC are too vague to provide enough insight in important details of processes. Depending of the mining goals, the challenge is to find good balance between overall structures and details.

Strongly related model representation languages are proposed in [5], [2] as a universal and robust language which allows for accommodating different model semantics, replay semantics, and fitness semantics. However, in [5], [2] they assume that a process model is already available. The discovering is beyond the scope of [5], [2] and is exactly the goal of the FHM as presented in this paper. Combining both approaches in one robust mining and conformance checking method, seems very attractive. The most significant difference between the process representations of [5], [2] and the representation as used in this paper is the use of split/join frequency information in the so-called augmented-C-net. Other relevant work in this domain is in [4]. However, as mentioned in [4], “one of the shortcomings of the presented approach is that it often generates results for which the user cannot understand how they came to be” [page 334]. An important motivation for the approach presented in this paper is the development of a flexible control-flow mining algorithm that performs well in practical situations and with results that are easy to understand.

The remainder of this paper is organized as follows. In Section II we first present a process model in the well-known Petri net formalism, that will be used as a running example. In Section III we define the new process representation lan-
guages (i.e., C-nets). As an illustration the running example is translated into the updated process representation language, the C-net. In Section IV the details of the different mining steps of FHM are presented: (i) the building of the Dependency Graph (DG), (ii) the extension of the DG up to a augmented-C-net, and (iii) the possible extension of the process model with long-distance dependencies. In Section V we illustrate the behavior of the FHM in the situation with noise and in low structured domains. In the final section (Section VI) we present our conclusion and future work.

II. RUNNING EXAMPLE

The process model as depicted in Fig. 2 is used as running example to illustrate the mining process of the FHM. This model is also used for generating an artificial event log. However, during the generation of the event log, the hidden tasks D1, D2 and D3 are not registered. Hidden tasks are a standard solution within the Petri net formalism to deal with more complex and flexible split/join constructs.

The process model is used for generating an event log with 1000 random traces. This log is employed to illustrate the different mining steps of the FHM. Afterwards, this event log is adopted to generate others with 5%, 10% and 20% noise. To incorporate noise in the event logs we use five different types of noise generating operations [7]: (i) delete the head of a trace, (ii) delete the tail of a trace, (iii) delete a part of the body, (iv) remove one event, and finally (v) interchange two random chosen events. During the deletion-operations at least one event, and no more than one third of the trace, is deleted. To incorporate noise, the traces of the original noise-free event log are randomly selected and then one of the five above described noise generating operations is applied (each noise generation operation with an equal probability of 1/5).

The resulting noisy event logs are used in Subsection V-A to illustrate the mining behavior of the FHM in combination with noise. The combination of parallelism (after task A two parallel processes are started), loops (length-one, length-two and longer loops), hidden tasks, low frequent behavior, and noise, make this event log difficult to mine.

As indicated before, process models in the FHM approach are not Petri nets but so-called “Causal nets” (C-net). Next, we will first define the concept of a C-net and illustrate the concept by the translation of the Petri net in Fig. 2 into a C-net.

III. INTERNAL REPRESENTATION

Definition 1 (Causal net (C-net)): A C-net is a tuple (T, I, O), where
- T is a finite set of tasks,
- I : T → P(T) is the input pattern function,
- O : T → P(T) is the output pattern function.

If e ∈ T then \(□e = \bigcup I(e) \) denotes the input tasks of e and \(e□ = \bigcup O(e) \) the output tasks of e.

Definition 2 (Dependency Graph (DG)): If \((T, I, O)\) is a Causal net then the corresponding Dependency Graph (DG) is a relation on \(T (DG \subseteq T \times T) \), with

\[
DG = \{(a, b) | (a \in T \land b \in a\Box) \lor (b \in T \land a \in □b)\}
\]

As an example, we show how the Petri net in Fig. 2 can be represented as a C-net (see Table I). The Petri net in Fig. 2 has 12 tasks \((A, B, \ldots, L)\), so the corresponding task set \(T = \{A, B, \ldots, L\} \).

For each task the table shows an input (I) and an output (O) set expression. The set of subsets in the I-column describes which subsets of tasks should occur to enable the occurrence of the given task at the middle column. Tasks in the same subset are in an and-relation. The subsets themselves are in an or-relation. For instance, consider task \(H \) in Fig. 2. This task can occur whenever task \(F \) or \(G \) occurs. So, \(I(H) = \{\{F\}, \{G\}\} \). Similarly, the set expressions in the O-column shows which tasks may be executed after the execution of a given task. For instance, consider task \(A \) in Fig. 2. Since both tasks \(B \) and \(C \) are executed after the execution of \(A \), \(O(A) = \{\{B, C\}\} \). Remark that the set expressions can be straightforwardly translated into logical expressions. The input set expression \(\{\{J, H\}, \{J, D\}\} \) of task \(K \) can thus be seen as the same as the logical expression \((J \land H) \lor (J \land D)\).

IV. THE FLEXIBLE HEURISTICS MINER (FHM) ALGORITHM

To construct a process model on the basis of an event log, the log should be analyzed for causal dependencies, e.g., if a task is always followed by another task it is likely that there is a dependency relation between both tasks. To analyze these relations we first build a dependency graph (DG). The building of the DG in FHM is exactly the same as in the HM [8]. For the
sake of completeness the necessary basic relations, measures and the construction of the DG (Subsection IV-A) are again presented in this paper.

Definition 3 (Basic Relations): Let \(T \) be a set of tasks. \(\delta \in T^* \) is a process trace, \(W : T^* \rightarrow \mathcal{N} \) is a process log, and \(a, b \in T \):

1) \(a \xrightarrow{W} b \) iff there is a trace \(\delta = t_1 t_2 \ldots t_n \) and \(i \in \{1, \ldots , n-1\} \) such that \(\delta \in W \) and \(t_i = a \) and \(t_{i+1} = b \) (direct successor),
2) \(a \xrightarrow{W,2} b \) iff there is a trace \(\delta = t_1 t_2 \ldots t_n \) and \(i \in \{1, \ldots , n-2\} \) such that \(\delta \in W \) and \(t_i = t_{i+2} = a \) and \(t_{i+1} = b \) and \(a \neq b \) (length-two loops),
3) \(a \xrightarrow{W,3} b \) iff there is a trace \(\delta = t_1 t_2 \ldots t_n \) and \(i < j \) and \(i, j \in \{1, \ldots , n\} \) such that \(\delta \in W \) and \(t_i = a \) and \(t_j = b \) (direct or indirect successor).

A. Step 1: Mining of the dependency graph (DG)

As indicated, the starting point is the construction of a so-called dependency graph (DG). A frequency-based metric is used to indicate how certain we are that there is a truly dependency relation between two events \(A \) and \(B \) (notation \(A \Rightarrow_W B \)). The calculated \(\Rightarrow_W \) values between the events of an event log are used in a heuristic search for the correct dependency relations.

Definition 4 (Dependency measures): Let \(W \) be an event log over \(T \), \(a, b \in T \), \(|a \xrightarrow{W} b| \) the number of times \(a \xrightarrow{W} b \) occurs in \(W \), and \(|a \xrightarrow{W,2} b| \) is the number of times \(a \xrightarrow{W,2} b \) occurs in \(W \).

\[
a \Rightarrow_W b = \left(\frac{|a \xrightarrow{W} b|}{|a \xrightarrow{W} b| + |b \xrightarrow{W} a| + 1} \right) \text{ if } (a \neq b) \tag{1}
\]

\[
a \Rightarrow_W a = \left(\frac{|a \xrightarrow{W} a|}{|a \xrightarrow{W} a| + 1} \right) \tag{2}
\]

\[
a \Rightarrow_W^2 b = \left(\frac{|a \xrightarrow{W,2} b| + |b \xrightarrow{W,2} a|}{|a \xrightarrow{W,2} b| + |b \xrightarrow{W,2} a| + 1} \right) \tag{3}
\]

First, remark that the value of \(a \Rightarrow_W b \) is always between -1 and 1. Some simple examples demonstrate the rationale behind this definition. If we use this definition in the situation that, in 5 traces, task \(A \) is directly followed by task \(B \) but the other way around never occurs, the value of \(A \Rightarrow_W B = 5/6 = 0.833 \) indicates that we are not completely sure of the dependency relation (only 5 observations possibly caused by noise). However, if there are 50 traces in which \(A \) is directly followed by \(B \) but the other way around never occurs, the value of \(A \Rightarrow_W B = 50/51 = 0.980 \) indicates that we are pretty sure of the dependency relation. If there are 50 traces in which task \(A \) is directly followed by \(B \) and noise caused

\(T^* \) is the set of all sequences (i.e., traces) that are composed of zero or more tasks of \(T \). \(W : T^* \rightarrow \mathcal{N} \) is a function from the elements of \(T^* \) to \(\mathcal{N} \) (i.e., the number of times an element of \(T^* \) appears in the process log). In other words, \(W \) is a bag of traces.

Because the event log \(W \) is a bag, the same trace can appear more than once in the log and patterns can appear more times in a trace. If, for instance, the pattern \(ab \) appears twice in a trace (e.g., \(caba\text{f摄abcafh} \)), and this trace appears three times in \(W \) (i.e., \(W(caba\text{f摄abcafh})=3 \)) then these appearances count as 6 in the \(|a \xrightarrow{W} b| \) measurement.

\(B \) to follow \(A \) once, the value of \(A \Rightarrow_W B \) is 49/52 = 0.94 indicating that we are still pretty sure of a dependency relation.

A high \(A \Rightarrow_W B \) value strongly suggests that there is a dependency relation between task \(A \) and \(B \). We can use the dependency measures of Definition 4 in two different ways: (i) directly (i.e., without the all-tasks-connected heuristic), or (ii) in combination with the all-tasks-connected heuristic.

Without the use of the all-tasks-connected heuristic three threshold parameters are available in the FHM to indicate that we will accept a dependency relation: (i) the Dependency threshold, (ii) the Length-one loops threshold, and (iii) the Length-two loops threshold. Usually the three parameters (i.e., the Dependency thresholds) have the same value (default 0.9). However, by using different parameters it is, for instance, possible to build a model without length-one loops (choose the Length-one loops threshold = 1.0). With these thresholds we can indicate that we accept dependency relations between tasks that have a dependency measure above the value of the dependency thresholds resulting in a control-flow model with only the most frequent tasks and behavior. By changing the parameters we can influence how complete the control-flow model becomes.

The advantage of using the all-tasks-connected heuristic is that many dependency relations are tracked without any influence of any parameter setting. The result is a relative complete and understandable control-flow model even if there is some noise in the log. The underlying intuition in the all-tasks-connected heuristic is that each non-initial task must have at least one other task that is its cause, and each non-final task must have at least one dependent task. Using this information we can first build a workflow model taking the best candidates (i.e., with the highest \(A \Rightarrow_W B \) scores). One extra parameter is available in combination with the all-tasks-connected heuristic the so-called relative to best threshold. With this threshold we can indicate that we will also accept dependency relations between tasks that have (i) a dependency measure above the value of the dependency threshold, or (ii) have a dependency measure “close” to the first already accepted dependency value (i.e., for which the difference with the “best” dependency measure is lower than the value of relative-to-best threshold). However, if we use this heuristic in the context of a less-structured process the result is a very complex model with all tasks and a high number of connections (as indicated in Fig 1).

In the next Sections the details of the all-tasks-connected heuristic are given. The all-tasks-connected heuristic is implemented in the algorithm items 4 through 9. In the items 10 and 11 the minimal connected process model is extended with other reliable connections.

For practical reasons, we start adding two artificial tasks to identify univocally the beginning and the end of the process. This is especially practical if there is not a clear unique start and end task (e.g., if there is noise in the event log).

Definition 5 (Start/End extension): Let \(W \) be an event log over \(T \). Then \(W^+ \) is the (artificial) start/end-extension over \(T^+ \) with
1) \(T^+ = T \cup \{\text{start, end}\} \)
2) \(W^+ = \{\text{start } \delta \text{ end } | \delta \in W\} \)

Definition 6 (Dependency Graph (DG)-algorithm): Let \(W \) be an event log over \(T, T^+ \) an event log over \(T^+ \) (i.e., the start/end-extension of \(W \)), \(\sigma_r \) the (absolute) Dependency Threshold (default 0.9), \(\sigma_{L1L} \) the Length-one-loops Threshold (default 0.9), \(\sigma_{L2L} \) the Length-two-loops Threshold (default 0.9), and \(\sigma_t \) the Relative-to-best Threshold (default 0.05). \(\text{DG}(W^+) \) (i.e., the dependency graph for \(W^+ \)) is defined as follows:

1. \(T = \{t \mid \exists \sigma \in W^+ [t \in \sigma]\} \) (the set of tasks appearing in the log).
2. \(C_{in} = \{(a, a) \in T \times T \mid a \Rightarrow W a \geq \sigma_{L1L}\} \) (length-one loops),
3. \(C_{out} = \{(a, b) \in T \times T \mid b \neq \text{End} a \neq b \wedge \forall y \in \text{Task}[a \Rightarrow W b \wedge a \Rightarrow W y]\} \) (for each task, the strongest follower),
4. \(C_{out} = C_{out} - C_{out}' \) (remove the weak connections),
5. \(C_{in} = \{x, a) \in C_{in}[x \Rightarrow W x) < \sigma_a \wedge \exists (b, b) \in C_{out}' \}
6. \(C_{out} = C_{in} - C_{in}' \) (remove the weak connections),
7. \(C_{out} = C_{out} - C_{out}' \) (remove the weak connections),
8. \(C_{in} = \{x, a) \in C_{in}[x \Rightarrow W x) < \sigma_a \wedge \exists (b, b) \in C_{in} \}
9. \(C_{out} = C_{in} - C_{in}' \) (remove the weak connections),
10. \(C_{out} = \{(a, b) \in T \times T | a \Rightarrow W b \geq \sigma_a \wedge \exists (c, c) \in C_{out} \}
11. \(C_{out} = \{(a, b) \in T \times T | a \Rightarrow W b \geq \sigma_a \wedge \exists (c, c) \in C_{out} \}
12. \(\text{DG} = C_{in} \cup C_{out} \cup C_{out} \cup C_{in} \).

To illustrate the algorithm as given above we apply the DG-algorithm on the event log generated with the process model as given in Fig. 2. As noticed before, the hidden tasks D1, D2 and D3 are not registered. The basic information we will use is Table II (the counting of the direct successors (i.e., \(a \Rightarrow w \)), Table III (the counting of the length-two loops (i.e. \(a >> w \)), and Table IV (the dependency measures).

1. The first step of the algorithm is the construction of the set \(T \) (the set of all tasks appearing in the log).
2. Looking at the diagonal of Table II there is only one candidate for \(C_{in} \): task I is 315 times followed by itself. The value of \(I \Rightarrow W I = 315/315+1 \geq \sigma_{L1L} \), resulting in \(C_{in} = \{I, I\} \).
3. For this step of the algorithm we make use of Table III. The table indicates that pattern \(DF \) appears 89 times in the log and pattern \(FDF \) 110 times. Therefore \(D \Rightarrow W F = (89+110)/(89+110+1) = 0.995 \). Because \(F \notin C_{in} \) and \(D \notin C_{in} \) and \(0.995 \geq \sigma_{L2L} \), both \((F, D) \in C_{in} \) and \((F, D, F) \in C_{in} \). The same argumentation counts for the pattern \(EG \) resulting in \(C_{in} = \{(F, D), (D, F), (E, G), (G, E)\} \).
4. Based on Table IV check each non \text{End}-row for the highest value (the strongest follower). For example, for the \(C \) task the highest value (in boldface) is 0.997; therefore \((C, J) \) is in the set \(C_{out} \).
5. Based on Table IV check each non \text{Start}-column for the highest value (the strongest cause). For example, for the \(K \) task the highest value (in boldface) is 0.998; therefore \((H, K) \) is in the set \(C_{in} \).

6. As an illustration we take the tasks \(D \) and \(F \). They are in a direct loop (i.e., \((D, F, C) \in C_{in} \)). The strongest output connection of \(D \) beside \(F \) is \(K \) (0.833), and from \(F \) is \(H \) (0.997). For this reason \((D, K) \in C_{out} \) (is not strictly necessary) and will be removed from \(C_{out} \) (step 7 of the algorithm). In Table IV the removed connections...
ACTIVITY

<table>
<thead>
<tr>
<th>[I]</th>
<th>ACTIVITY</th>
<th>[O]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[I]</td>
<td>[A]</td>
<td>[A]</td>
</tr>
<tr>
<td>[I]</td>
<td>[B]</td>
<td>[B]</td>
</tr>
<tr>
<td>[I]</td>
<td>[C]</td>
<td>[C]</td>
</tr>
<tr>
<td>[I]</td>
<td>[D]</td>
<td>[D]</td>
</tr>
<tr>
<td>[I]</td>
<td>[E]</td>
<td>[E]</td>
</tr>
<tr>
<td>[I]</td>
<td>[F]</td>
<td>[F]</td>
</tr>
<tr>
<td>[I]</td>
<td>[G]</td>
<td>[G]</td>
</tr>
<tr>
<td>[I]</td>
<td>[H]</td>
<td>[H]</td>
</tr>
<tr>
<td>[I]</td>
<td>[J]</td>
<td>[J]</td>
</tr>
<tr>
<td>[I]</td>
<td>[K]</td>
<td>[K]</td>
</tr>
<tr>
<td>[I]</td>
<td>[L]</td>
<td>[L]</td>
</tr>
</tbody>
</table>

TABLE V
THE RESULTING DG IN TABLE LAYOUT.

are marked with underlining.

8.9. Analogue to step 6 and 7, but now for the incoming connections.

10.11 Depending on the values of the parameter settings, extra connections are accepted if the absolute dependency threshold σ_a (default 0.9) is fulfilled or if the relative-to-best threshold σ_r (default 0.05) is fulfilled. Remark that for the default parameter setting the dependency relation between D and K is not accepted because $D \Rightarrow K = 0.333 < 0.9$ (Table IV). However, the connection from J to L is accepted, because the all tasks connected heuristic is active. In the matrix of Table IV the extra accepted dependency values are displayed in Italics.

12. Finally we can combine the information in the different matrices to perform the last step of the algorithm.

If we compare Table V with the result of applying Definition 2 on the C-net as given in Table I the only difference is the missing low frequent connection from D to K. If we use the parameter settings $\sigma_a = 0.80$ and $\sigma_r = 0.20$ this connection is also accepted (dependency value $= 0.833$). A graphical representation (ProM 6.0) of Table V is given in Fig. 3. This graph is augmented with extra information. The numbers in the task boxes indicate the frequency of the task; the numbers on the arcs indicate the reliability of the dependency relation. Other views are also possible within ProM.

The DG gives information about the dependency between tasks, but the types of splits/joins are not yet mined.

Fig. 3. The resulting dependency graph (DG).

B. Step 2: mining of the splits/joins

The next step of the FlexibleHeuristicsMiner is the characterization of split and join points of the DG. This part of the mining algorithm and the representation language are different from the approach in the HM. Thus, for each task in the DG, the different split and join patterns are mined. Let us first explain the basic idea. Starting with task A of the DG of Table V the output set is $\{B, C\}$. However, we want to know whether task A is always followed by both B and C (i.e., an AND-split), only by either B or C (i.e., a XOR-split), or most of time by B or C and sometimes by both (i.e., an OR-split). We will use a simple extension of the C-net formalism (Definition 1) to characterize the behavior of the splits and joins. The mining of the splits/joins mainly relies on two data structures: (i) the DG and (ii) the event log that contains information about the ordering of the tasks. The result is an augmented-C-net. The augmented-C-net is a C-net but with bags instead of sets so that it becomes possible to indicate the number of times specific split and join patterns appear in the event log. This information is the basis for statistical computing of valid splits/joins.

Definition 7 (augmented C-net): An augmented-C-net is a tuple $= (T, I, O)$, where

- T is a finite set of tasks,
- $I : T \rightarrow P(T \rightarrow N)$ is the input frequency function,
- $O : T \rightarrow P(T \rightarrow N)$ is the output frequency function.

Based on the information in the event log it appears that task A (frequency 1000) is always followed by both B and C. In the augmented-C-net (Table VI) this is indicated by the output-bag of task A (i.e., $O(A) = \{B, C\}$. The output bag of task B (i.e., $O(B) = \{D, E\}$) is an example of a XOR-split. In the ProM implementation of FHM another visualization of augmented-C-net is used. By clicking a task (e.g., task F) in the DG graph (Fig. 3) the split and join information of that task is displayed (Tab. VII). Remark that an augmented-C-net can easily be translated into the corresponding C-net or in a simplified C-net (i.e., by only representing high-frequent
patterns). The basic idea behind the building of the augmented-C-net is relatively simple. We take task A, the DG of Table V, and the trace $ABDCIFIJEGHK$ as example. We first look at the split information for A. Because $\square A = \{B, C\}$, $\square B = \{A\}$ and $\square C = \{A, L\}$ (see the DG in Table VI) we know that there are two candidates that can be activated by A. Because both tasks B and C appear in the trace and A is the nearest candidate appearing before B and C, we take the position that both B and C are activated by the current A and the split frequency information of A is updated with the pattern $\{B, C\}$ (i.e., $O(A) = O(A)\cup\{(B, C)\}$).

However, more complex situations are possible. For instance look at the split of tasks B, $\square B = \{D, E\}$ and $\square D = \square E = \{B, F, G\}$. That means that there are three candidate tasks for the activation of D and E. If we look at the trace $ABDCIFIJEGHK$ the only available candidate for D is B (i.e., B is the only candidate that appears before D). For E there are two candidates B and F both appearing before E. Because the distance between F and E is closer than the distance between B and E we take the position that F is the activator of E.5 Therefore the split frequency information of B is updated with the pattern $\{D\}$ (i.e., $O(B) = O(B)\cup\{(D)\}$).

Finally we look at the split I in combination with the first appearance of I in the trace $ABDCIFIJEGHK$. $\square I = \{I, J\}$, $\square I = \{CI\}$ and $\square J = I$. In other words task I can activate I and J. The only candidate for the second I in the trace is the first I. Based on the nearest candidate strategy we take the position that task J is caused by the second appearance of I. In other words the split information for the first appearance of I results in updating of the output frequency with $\{I\}$ (i.e., $O(I) = O(I)\cup\{(I)\}$). When there is only one candidate we will accept this candidate as the activator.

For the mining of the frequency information of the joins of the DG we follow the same strategy but now we go backwards through the traces. Table VI shows the resulting augmented-C-net.

\section*{C. Step 3: mining long-distance dependencies}

The final step of the FlexibleHeuristicsMiner is the identification of dependencies that are not represented yet in the DG. Called long-distance dependencies (or non-free choice), these relations indicate cases in which a task X depends indirectly on another task Y to be executed. That means that, in a split or join point, the choice may depend on choices made in other parts of the process model. Fig. 4 depicts a Petri Net with two distinct long-distance dependencies (i.e., the relations $B \Rightarrow E$ and $C \Rightarrow F$). Note that, in this example, there are only two possible sequences: $ABDEG$ and $ACDEFG$. However, without mining the long-distance dependencies, the DG does not ensure that task E is only executed if D follows B. The same happens for F. Thus, non-valid sequences such as $ABDEG$ or $ACDEFG$ might fit in the process model. In order to handle the long-distance dependency issue, a new

\begin{equation}
\begin{aligned}
\text{a} &\Rightarrow_W^b \text{b} = \left(\frac{2(|a|\gg>\gg_W\text{b}|)}{|a|+|b|+1}\right) - \left(\frac{2\text{Abs}(|a| - |b|)}{|a|+|b|+1}\right) \\
\end{aligned}
\end{equation}

A value close to 1 of the first part of the expression indicates that task a is always followed by task b. A value close to 0 of the second part indicates that the frequency of tasks a and b is about equal. That means that an overall value close to 1 indicates both: task a is always followed by task b and the frequencies of tasks a and b are about equal7. Remark that some long-dependency cases are already indirectly represented in the DG. A good example is the relation $A \Rightarrow D$ in Fig. 4, which its long-distance dependency value is close to 1.0 but no extra dependency relation is necessary. This happens because A is always indirectly followed by D, turning redundant the extra direct connection from A to D. With this remark, it is finally defined that a long-dependency relation $X \Rightarrow Y$ (with $X, Y \in T$) needs a new dependency relation in the DG whenever $X \Rightarrow_W Y \geq \sigma_l$ (σ_l is a long-distance threshold; by default $\sigma_l = 0.90$) and it is possible to go from X to the end task without visiting Y. Note that every time a new (long-distance) dependency relation is added into the DG the relation tasks’ inputs and outputs change as well as the split/join points. So, at the end of this stage (mining long-distance dependencies), it is necessary to recompute the split/join information.

Up to here, the details of the process representation formalism and the mining algorithm are presented. In the next section we illustrate the mining results in case of noise and in case of a less-structured domain.

5We only take tasks appearing before E as possible candidates. The choice of the nearest candidate is only one of the possible selection strategies.

6In the pattern $abc|def|ghijkl$ only the underlined appearances of the pattern $a...b$ contribute to the value $|a|\gg>\gg_W|b|$ (i.e., only $a...b$ patterns without other a’s or b’s between them).

7The requirement that the frequency of both tasks B and E are roughly equal is a restriction that brings about that not all possible long-distance dependency relations are mined.
V. Noise and Low Structured Domains

A. Noise

In a first experiment we illustrate the usage of the FHM on event logs with noise (i.e., the event logs with 5%, 10% and 20% noise as described in the Section II). Both the effects during the mining of the DG (step 1 of the mining algorithm) and during the mining of augmented-C-net (step 2) are discussed.

First, the mining results at the DG level. Using the default parameter settings in combination with all-tasks-connected heuristic on the event logs with different noise levels, the same 19 dependency relations were successfully mined. Logically, the only difference is related to the dependency measures. Table VIII shows the differences in the average dependency measures (i.e., 19 relations) for the different noise levels. We can conclude that the impact of noise on the DG is almost negligible. Unlike the mining of the DG, the mining of the augmented-C-net do not rely directly on any threshold. So, all the noisy information is considered for analysis. In this way it is possible to have the user aware that there are some unexpected cases (noise or low frequent behavior) that do not fit the process model. Since the support of these cases is typically much lower than a regular case, the user can easily detect non-conformance situations looking only at the process model information. Therefore, the same kind of analysis is done in this evaluation study. The event logs with noise are mined. We use the mining results of the event log without noise as reference. Table IX shows the augmented-C-net information of task F in the case of 20% noise. Comparing these results with the results in Table VII, it is possible to see that there is a clear distinction between the original patterns (the patterns with a high frequency) and the patterns caused by the noise (the patterns with a low frequency). This example also demonstrate the use of the augmented-C-net for conformance checking. Table X shows the unexpected patterns and their frequency for the different noise levels. For instance, the information about task F with 20% noise is based on the corresponding split and join tables (Table IX). Thus, the final values are JOINS = 1.35% ± 1.4% and SPLITS = 1.35%±0.11%±0.11% ≈ 1.6%. Therefore, it can be concluded that it is possible to distinguish easily the noise in the split and join information.

FIG. 5. The Fig. 4’s corresponding DG with long-distance dependency relations.

<table>
<thead>
<tr>
<th>Average Dependency</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9849</td>
<td>0.9829</td>
<td>0.9821</td>
<td>0.9814</td>
</tr>
</tbody>
</table>

Table VIII
Evolution of average dependency measures in the DG for different noise levels.

B. Low Structured Domains

The second part of this evaluation study is based on an event log from a less-structured domain. Using the event log introduced in Section I, it is intended to show how the FHM can provide insight about very flexible applications. Having the example depicted by Fig. 1 as reference, we pretend to analyze the behavior of one complex task (identified at the right-hand side of the picture, with several incoming and outgoing connections). This analysis is done for two kinds of process models: (i) a complete model in which even the low-reliable dependency relations are considered, and (ii) a simplified model in which only the high-reliable dependency relations are taken into account. Note that, by space issues, this analysis is only done for the split patterns.

The FHM result for the complete model is depicted by Fig. 1. This model is characterized by a dense DG, which turns the model analysis in a difficult task. Nonetheless, there is a lot of information in the model that can be intuitively analyzed. A good example is the splits and joins characterization provided by the FHM. Table XI shows how a given task behaves in this complex model. Note that each pattern presented in Table XI has corresponding bag expression. For instance, the first and the last patterns can be expressed by \{O_5\}^{1151} and \{O_7, O_8\}^{69}. Additionally, the empty pattern that appears in the list (second one) is the result of two possible events: (i) the given task may be an end task, or (ii) the traces that originated those empty patterns are very specific cases (probably considered as noise) that do not fit in the DG. The FHM result for the simplified model is depicted by Fig. 6. Contrarily the complete one, this model is characterized by a sparser DG. This means that the information provided by the DG is easier to understand by the analyst. However, since
TABLE XI
THE SPLIT PATTERNS OF THE B Perifeer infuas TASK IN THE COMPLETE MODEL.

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>1151</td>
</tr>
<tr>
<td>✓</td>
<td>469</td>
</tr>
<tr>
<td>✓</td>
<td>180</td>
</tr>
<tr>
<td>✓</td>
<td>99</td>
</tr>
<tr>
<td>✓</td>
<td>92</td>
</tr>
<tr>
<td>✓</td>
<td>71</td>
</tr>
<tr>
<td>✓</td>
<td>69</td>
</tr>
<tr>
<td>46 others</td>
<td>219</td>
</tr>
</tbody>
</table>

TABLE XII
THE SPLIT PATTERNS OF THE B Perifeer infuas TASK IN THE SIMPLIFIED MODEL.

<table>
<thead>
<tr>
<th>OUTPUTS</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>1235</td>
</tr>
<tr>
<td>✓</td>
<td>530</td>
</tr>
<tr>
<td>✓</td>
<td>151</td>
</tr>
<tr>
<td>✓</td>
<td>116</td>
</tr>
<tr>
<td>✓</td>
<td>97</td>
</tr>
<tr>
<td>11 others</td>
<td>171</td>
</tr>
</tbody>
</table>

this sparse DG was obtained through abstraction processes, some of the information may be just omitted in the DG. Nevertheless, it is possible to identify these cases with the FHM using the splits and joins information of the augmented-C-net. Table XII presents the splits and joins information for a given task of the simplified model. As expected, the patterns depicted in Table XII are in line with the ones generated in the complete model. Although in the simplified model only four out of eight outputs are taken into account, it is possible to characterize the main behavior of the given task. The reason why the very same pattern \(O_8\) (the most frequent one) has a higher frequency in the simplified case is related with pattern combination. For instance, the complete case’s patterns \(\{O_8\}\) \(^{1151}\) and \(\{O_7, O_8\}\) \(^{109}\) (and some other low frequent ones) are merged into the simplified case’s pattern \(\{O_8\}\) \(^{1235}\).

VI. CONCLUSIONS AND FUTURE WORK

In this paper the basic ideas behind the flexible heuristic miner are presented: the development of a robust and flexible control-flow mining algorithm that performs well in practical situations and with results that are easy to understand. To achieve this goal two new process modeling formalism are introduced (i.e., Causal nets (C-nets) and augmented-Causal nets (augmented-C-nets)). Also the three steps of heuristics driven control-flow mining algorithm are defined (i.e., the Flexible Heuristics Miner (FHM)). A working example is used to illustrate the modeling formalism and the mining algorithm. Finally, the behavior of the FHM in situations with event logs with noise and event logs from low-structured domains is illustrated. For the illustrative examples it is possible to mine the main behavior in the event log and the approach seems robust for noise. However, there are still plenty challenges left.

To get a better understanding of the mining qualities of the FHM we have to perform more mining experiments with all kind of event logs (noise, complex and low structured domains, etc.). Also our claim that the resulting models of the FHM approach are easy to understand by the process owners needs some experimental evidence. The implementation of the long-distance mining is still incomplete; only simple long-distance dependencies can be mined. Keeping the basic ideas, improvements of the mining algorithm seems possible.

Acknowledgments This work is being carried out as part of the project “Merging of Incoherent Field Feedback Data into Prioritized Design Information (DataFusion)”, sponsored by the Dutch Ministry of Economic Affairs under the IOP IPCR program.

REFERENCES